conv_mkldnn_op.cc 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::convolution_forward;
using mkldnn::convolution_backward_weights;
using mkldnn::convolution_backward_data;
using mkldnn::convolution_direct;
using mkldnn::prop_kind;
using mkldnn::padding_kind;
using mkldnn::stream;

namespace {
std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                     const memory::desc& dst, const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const mkldnn::engine& engine);

convolution_backward_weights::primitive_desc ConvBwdWeightsPrimitiveDesc(
    const memory::desc& src, const memory::desc& diff_weights,
    const memory::desc& diff_dst, const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const convolution_forward::primitive_desc& conv_pd,
    const mkldnn::engine& engine);

convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
    const memory::desc& diff_src, const memory::desc& weights,
    const memory::desc& diff_dst, const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const convolution_forward::primitive_desc& conv_pd,
    const mkldnn::engine& engine);
}  // anonymous namespace

template <typename T>
class ConvOpMkldnnKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    // Get an unique name from "argument" name of "Output" variable
    // This name will be used as key when saving info into device context
    const std::string key = ctx.op().Output("Output");
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    // TODO(pzelazko-intel) add support for group convolution and dilation
    PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    // allocate memory for output
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    // TODO(pzelazko-intel): support more formats
    // memory descriptors for convolution src/weight/dst
    auto conv_src_md =
        MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
    auto conv_weights_md =
        MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
    auto conv_dst_md =
        MKLDNNMemDesc(dst_tz, memory::data_type::f32, memory::format::nchw);

    // create memory primitives
    auto conv_src_memory =
        memory({conv_src_md, mkldnn_engine}, (void*)input_data);
    auto conv_weights_memory =
        memory({conv_weights_md, mkldnn_engine}, (void*)filter_data);
    auto conv_dst_memory = memory({conv_dst_md, mkldnn_engine}, output_data);

    std::unique_ptr<convolution_forward::primitive_desc> conv_pd =
        ConvFwdPrimitiveDesc(conv_src_md, conv_weights_md, conv_dst_md, strides,
                             paddings, mkldnn_engine);

    // save p_conv_pd into dev_ctx to be referred in backward path
    auto p_conv_pd = conv_pd.get();
    std::shared_ptr<void> conv_pd_value = std::move(conv_pd);
    dev_ctx.SetBlob(key_conv_pd, conv_pd_value);

    // create convolution op primitive
    auto conv_prim = convolution_forward(*p_conv_pd, conv_src_memory,
                                         conv_weights_memory, conv_dst_memory);

    // push op to stream and wait MKLDNN until it's executed
    std::vector<primitive> pipeline{conv_prim};
    stream(stream::kind::eager).submit(pipeline).wait();
  }
};

template <typename T>
class ConvGradOpMkldnnKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

    // Get an unique name from "argument" name of "Output" variable
    // This name will be used as key when saving info into device context
    const std::string key = ctx.op().Input("Output");
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    // allocate memory for gradient of input/filter
    if (input_grad) {
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

    // TODO(pzelazko-intel): support more formats
    auto conv_src_md =
        MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
    auto conv_diff_src_md =
        MKLDNNMemDesc(src_tz, memory::data_type::f32, memory::format::nchw);
    auto conv_weights_md =
        MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
    auto conv_diff_weights_md =
        MKLDNNMemDesc(weights_tz, memory::data_type::f32, memory::format::oihw);
    auto conv_diff_dst_md =
        MKLDNNMemDesc(dst_tz, memory::data_type::f32, memory::format::nchw);

    // create memory
    auto conv_diff_dst_memory =
        memory({conv_diff_weights_md, mkldnn_engine}, (void*)output_grad_data);
    // Retrieve conv_pd from device context
    std::shared_ptr<void> conv_pd;
    convolution_forward::primitive_desc* p_conv_pd;

    conv_pd = dev_ctx.GetBlob(key_conv_pd);
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");
    p_conv_pd =
        static_cast<convolution_forward::primitive_desc*>(conv_pd.get());

    // create backward conv primitive for weights
    if (filter_grad) {
      // create primitive descriptor
      convolution_backward_weights::primitive_desc conv_bwd_weights_pd =
          ConvBwdWeightsPrimitiveDesc(conv_src_md, conv_diff_weights_md,
                                      conv_diff_dst_md, strides, paddings,
                                      *p_conv_pd, mkldnn_engine);

      // create memory
      auto conv_diff_weights_memory = memory(
          {conv_diff_weights_md, mkldnn_engine}, (void*)filter_grad_data);
      auto conv_src_memory =
          memory({conv_src_md, mkldnn_engine}, (void*)input_data);

      // create backward conv primitive for weights
      auto conv_bwd_weights_prim = convolution_backward_weights(
          conv_bwd_weights_pd, conv_src_memory, conv_diff_dst_memory,
          conv_diff_weights_memory);

      // push primitive and execute it
      std::vector<primitive> pipeline{conv_bwd_weights_prim};
      stream(stream::kind::eager).submit(pipeline).wait();
    }

    if (input_grad) {
      // create primitive descriptor
      convolution_backward_data::primitive_desc conv_bwd_data_pd =
          ConvBwdDataPrimitiveDesc(conv_diff_src_md, conv_weights_md,
                                   conv_diff_dst_md, strides, paddings,
                                   *p_conv_pd, mkldnn_engine);

      // create memory
      auto conv_diff_src_memory =
          memory({conv_diff_src_md, mkldnn_engine}, (void*)input_grad_data);
      auto conv_weights_memory =
          memory({conv_weights_md, mkldnn_engine}, (void*)filter_data);

      // create backward conv primitive for data
      auto conv_bwd_data_prim =
          convolution_backward_data(conv_bwd_data_pd, conv_diff_dst_memory,
                                    conv_weights_memory, conv_diff_src_memory);

      // push primitive and execute it
      std::vector<primitive> pipeline{conv_bwd_data_prim};
      stream(stream::kind::eager).submit(pipeline).wait();
    }
  }  // Compute()
};

namespace {
std::unique_ptr<convolution_forward::primitive_desc> ConvFwdPrimitiveDesc(
    const memory::desc& src, const memory::desc& weights,
    const memory::desc& dst, const std::vector<int>& strides,
    const std::vector<int>& paddings, const mkldnn::engine& engine) {
  mkldnn::memory::dims stride_dims = {strides[0], strides[1]};
  mkldnn::memory::dims padding_dims = {paddings[0], paddings[1]};

  auto conv_desc = mkldnn::convolution_forward::desc(
      mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights, dst,
      stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero);

  auto p_conv_pd = new convolution_forward::primitive_desc(conv_desc, engine);

  return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
      p_conv_pd);
}

convolution_backward_weights::primitive_desc ConvBwdWeightsPrimitiveDesc(
    const memory::desc& src, const memory::desc& diff_weights,
    const memory::desc& diff_dst, const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const convolution_forward::primitive_desc& conv_pd,
    const mkldnn::engine& engine) {
  auto conv_bwd_weights_desc = convolution_backward_weights::desc(
      convolution_direct, src, diff_weights, diff_dst, strides, paddings,
      paddings, padding_kind::zero);
  return convolution_backward_weights::primitive_desc(conv_bwd_weights_desc,
                                                      engine, conv_pd);
}

convolution_backward_data::primitive_desc ConvBwdDataPrimitiveDesc(
    const memory::desc& diff_src, const memory::desc& weights,
    const memory::desc& diff_dst, const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const convolution_forward::primitive_desc& conv_pd,
    const mkldnn::engine& engine) {
  auto conv_bwd_data_desc = convolution_backward_data::desc(
      convolution_direct, diff_src, weights, diff_dst, strides, paddings,
      paddings, padding_kind::zero);
  return convolution_backward_data::primitive_desc(conv_bwd_data_desc, engine,
                                                   conv_pd);
}
}  // anonymous namespace
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvOpMkldnnKernel<float>);

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ConvGradOpMkldnnKernel<float>);