split_lod_tensor_op.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/device_context.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

namespace paddle {
namespace operators {

struct CopyRange {
  size_t begin;
  size_t end;
};

using LoD = framework::LoD;

class SplitLoDTensorOp : public framework::OperatorBase {
 public:
  SplitLoDTensorOp(const std::string &type,
                   const framework::VariableNameMap &inputs,
                   const framework::VariableNameMap &outputs,
                   const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}
36 37 38 39

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
40 41 42 43 44 45 46 47 48 49
    auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensor>();
    auto &mask = scope.FindVar(Input("Mask"))->Get<framework::LoDTensor>();
    auto *out_true =
        scope.FindVar(Output("OutTrue"))->GetMutable<framework::LoDTensor>();
    auto *out_false =
        scope.FindVar(Output("OutFalse"))->GetMutable<framework::LoDTensor>();
    auto level = static_cast<size_t>(Attr<int>("level"));
    auto &x_lod = x.lod();
    auto &mask_dim = mask.dims();

Y
Yu Yang 已提交
50 51
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
52

53 54 55 56 57
    std::unique_ptr<framework::LoDTensor> cpu_mask{new framework::LoDTensor()};
    if (platform::is_cpu_place(mask.place())) {
      cpu_mask->ShareDataWith(mask);
    } else if (platform::is_gpu_place(mask.place())) {
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
58 59
      framework::TensorCopy(mask, platform::CPUPlace(), dev_ctx,
                            cpu_mask.get());
60 61 62 63 64 65
#else
      PADDLE_THROW("Not supported GPU, Please compile WITH_GPU option");
#endif
    }
    auto *mask_data = cpu_mask->data<bool>();

J
jerrywgz 已提交
66
    std::vector<std::vector<CopyRange>> copy_ranges(2);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

    // set out_true/out_false lod
    for (size_t t = 0; t < 2; t++) {
      LoD *lod = nullptr;
      if (t == 0) {
        lod = out_false->mutable_lod();
      } else {
        lod = out_true->mutable_lod();
      }
      lod->clear();
      for (size_t i = 0; i < static_cast<size_t>(mask_dim[0]); i++) {
        if (static_cast<size_t>(mask_data[i]) == t) {
          size_t start_idx = i;
          auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset(
              x_lod, start_idx, start_idx + 1, level);

          auto &lod_length = lod_and_offset.first;
          framework::AppendLoD(lod, lod_length);

          size_t start_offset = lod_and_offset.second.first;
          size_t end_offset = lod_and_offset.second.second;
          copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset});
        }
      }
    }

    for (size_t t = 0; t < 2; ++t) {
      framework::LoDTensor *out;
      if (t == 0) {
        out = out_false;
      } else {
        out = out_true;
      }
      auto &ranges = copy_ranges[t];
      size_t height = std::accumulate(
          ranges.begin(), ranges.end(), 0UL,
          [](size_t a, const CopyRange &b) { return a + b.end - b.begin; });
      auto x_dim = x.dims();
      x_dim[0] = static_cast<int64_t>(height);
      out->Resize(x_dim);
      out->mutable_data(x.place(), x.type());
      size_t offset = 0;
      for (auto &each_range : ranges) {
        size_t len = each_range.end - each_range.begin;
        if (len == 0) {
          continue;
        }
        // out[offset: offset+len] = x[each_range.begin: each_range.end]
D
dzhwinter 已提交
115 116
        auto slice = out->Slice(static_cast<int>(offset),
                                static_cast<int>(offset + len));
Y
Yi Wang 已提交
117 118 119
        framework::TensorCopy(x.Slice(static_cast<int>(each_range.begin),
                                      static_cast<int>(each_range.end)),
                              x.place(), dev_ctx, &slice);
120 121 122 123 124 125 126 127
        offset += len;
      }
    }
  }
};

class SplitLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
128
  void Make() override {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    AddInput("X", "The input LoDTensor");
    AddInput("Mask", "A bool column vector which mask the input");
    AddOutput("OutTrue", "True branch of input LoDTensor");
    AddOutput("OutFalse", "False branch of input LoDTensor");
    AddAttr<int>("level", "(int) the specific lod level to split.")
        .SetDefault(0)
        .EqualGreaterThan(0);
    AddComment(
        R"DOC(
        Split a LoDTensor with a Mask at certain level. The input LoDTensor
        has 3 sequence at certain lod level. The Mask is a bool column vector,
        such as [0, 1, 0] at the same level. The first and third sequence will
        be send to False Output LoDTensor; whereas the second sequence will
        be send to True Output LoDTensor. Please refer to MergeLoDTensorOp.)DOC");
  }
};

class SplitLoDTensorInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("X"),
                   "SplitLoDTensorOp must has input X.");
    PADDLE_ENFORCE(context->HasInput("Mask"),
                   "SplitLoDTensorOp must has input Mask.");
    PADDLE_ENFORCE(context->HasOutput("OutTrue"),
                   "SplitLoDTensorOp must has output OutTrue.");
    PADDLE_ENFORCE(context->HasOutput("OutFalse"),
                   "SplitLoDTensorOp must has output OutFalse.");

    auto mask_dim = context->GetInputDim("Mask");
Z
Zhaolong Xing 已提交
159 160 161 162 163 164 165 166
    PADDLE_ENFORCE_EQ(mask_dim.size(), 2,
                      "If you are using IfElse OP:"
                      "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                      "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                      "Please ensure that the cond should be a 2-D tensor and "
                      "the second dim size of cond should be 1. "
                      "But now the cond's shape is [",
                      *mask_dim.Get(), "].\n");
167
    if (context->IsRuntime()) {
Z
Zhaolong Xing 已提交
168 169 170 171 172 173 174 175
      PADDLE_ENFORCE_EQ(mask_dim[1], 1,
                        "If you are using IfElse OP:"
                        "\n\nie = fluid.layers.IfElse(cond=cond)\nwith "
                        "ie.true_block():\n    out_1 = ie.input(x)\n\n"
                        "Please ensure that the cond should be a 2-D tensor "
                        "and the second dim size of cond should be 1. "
                        "But now the cond's shape is [",
                        *mask_dim.Get(), "].\n");
176
    }
177 178 179 180 181 182

    context->SetOutputDim("OutTrue", context->GetInputDim("X"));
    context->SetOutputDim("OutFalse", context->GetInputDim("X"));
  }
};

H
hong 已提交
183 184
template <typename T>
class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpMaker<T> {
185
 public:
H
hong 已提交
186
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
187 188

 protected:
H
hong 已提交
189 190
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
191
    grad_op->SetType("merge_lod_tensor");
H
hong 已提交
192 193 194 195 196 197 198
    grad_op->SetInput("InTrue", this->OutputGrad("OutTrue"));
    grad_op->SetInput("InFalse", this->OutputGrad("OutFalse"));
    grad_op->SetInput("Mask", this->Input("Mask"));
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetOutput("Out", this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
199 200 201 202 203 204 205
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
206 207 208 209 210
REGISTER_OPERATOR(
    split_lod_tensor, ops::SplitLoDTensorOp, ops::SplitLoDTensorOpProtoMaker,
    ops::SplitLoDTensorInferShape,
    ops::SplitLoDTensorArrayGradMaker<paddle::framework::OpDesc>,
    ops::SplitLoDTensorArrayGradMaker<paddle::imperative::OpBase>);