concat_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <string>
18
#include <utility>
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/strided_memcpy.h"
23
#include "paddle/fluid/operators/utils.h"
24

25 26 27
#include "paddle/pten/kernels/concat_kernel.h"
#include "paddle/pten/kernels/funcs/concat_funcs.h"

28 29 30
namespace paddle {
namespace operators {

31
static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
32 33 34 35 36
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
37 38 39 40 41
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

template <typename DeviceContext, typename T>
class ConcatKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
    auto axis = ctx.Attr<int>("axis");
    bool need_resize_out_dims = false;
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
      need_resize_out_dims = true;
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    if (need_resize_out_dims) {
      const size_t n = ins.size();
      std::vector<framework::DDim> ins_dims(n);
      for (size_t i = 0; i < n; i++) {
        ins_dims[i] = ins[i]->dims();
      }

      framework::DDim out_dims =
          pten::funcs::ComputeAndCheckShape(true, ins_dims, axis);
      out->Resize(out_dims);
    }
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);

    // call new kernel
    auto& dev_ctx = ctx.device_context<DeviceContext>();
    std::vector<pten::DenseTensor> pt_ins;
    for (auto& in : ins) {
      pt_ins.push_back(*in);
    }

    pten::ConcatKernel<T>(
        static_cast<const typename paddle::framework::ConvertToPtenContext<
            DeviceContext>::TYPE&>(dev_ctx),
        pt_ins, axis, out);
  }
};

Q
QI JUN 已提交
90
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
91
class ConcatGradKernel : public framework::OpKernel<T> {
92 93
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Q
qiaolongfei 已提交
94 95
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
96
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
H
hong 已提交
97
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
98 99 100 101 102 103 104 105 106 107 108 109
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
110 111 112
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
Y
Yancey1989 已提交
113

114 115 116 117 118 119 120
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
Q
qiaolongfei 已提交
121 122 123
    // get output tensor that the name is not kEmptyVarName
    std::vector<framework::Tensor*> outputs;
    for (size_t j = 0; j < outs.size(); ++j) {
124 125
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
Q
qiaolongfei 已提交
126 127 128 129 130 131
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs.push_back(outs[j]);
      } else {
        outputs.push_back(nullptr);
      }
    }
C
chengduo 已提交
132
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
Q
qiaolongfei 已提交
133

C
chengduoZH 已提交
134 135
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && outs.size() < 10) {
C
chengduo 已提交
136 137 138
      std::vector<const framework::Tensor*> ref_shape;
      ref_shape.insert(ref_shape.begin(), ins.begin(), ins.end());
      StridedMemcpyWithAxis0<T>(dev_ctx, *out_grad, ref_shape, &outputs);
C
chengduoZH 已提交
139
    } else {
C
chengduo 已提交
140 141 142
      math::SplitFunctor<DeviceContext, T> split_functor;
      split_functor(dev_ctx, *out_grad, ctx.MultiInput<framework::Tensor>("X"),
                    static_cast<int>(axis), &outputs);
C
chengduoZH 已提交
143
    }
144 145 146 147 148
  }
};

}  // namespace operators
}  // namespace paddle