hl_cuda_cnn.cu 19.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include <float.h>
#include "hl_base.h"
#include "hl_cnn.h"

__global__ void KeFeature2col(size_t n, size_t height, const real* data_im,
                              size_t blockH, size_t blockW, size_t width,
                              size_t strideH, size_t strideW,
                              size_t paddingH, size_t paddingW,
                              size_t height_col, size_t width_col,
                              real* data_col) {
  size_t index =
    (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < n) {
    size_t w_out = index % width_col;
    index /= width_col;
    size_t h_out = index % height_col;
    size_t channel_in = index / height_col;
    size_t channel_out = channel_in * blockH * blockW;
    size_t h_in = h_out * strideH;
    size_t w_in = w_out * strideW;

    data_col += (channel_out * height_col + h_out) * width_col + w_out;
    for (size_t i = 0; i < blockH; ++i) {
      for (size_t j = 0; j < blockW; ++j) {
        int rIdx = int(h_in+i);
        int cIdx = int(w_in+j);
        if ((rIdx-(int)paddingH) >= (int)height ||
            (rIdx-(int)paddingH) < 0 ||
            (cIdx-(int)paddingW) >= (int)width ||
            (cIdx-(int)paddingW) < 0) {
          *data_col = 0;
        } else {
          rIdx = rIdx + channel_in*height - paddingH;
          cIdx = cIdx - paddingW;
          *data_col = data_im[rIdx* width + cIdx];
        }
        data_col += height_col * width_col;
      }
    }
  }
}

void hl_expand_feature2col(const real* dataIm, size_t channels,
                           size_t height, size_t width,
                           size_t blockH, size_t blockW,
                           size_t strideH, size_t strideW,
                           size_t paddingH, size_t paddingW,
                           size_t outputH, size_t outputW,
                           real* dataCol) {
  size_t numKernels = channels * outputH * outputW;

  size_t blocks = (numKernels + 1024 -1) / 1024;
  size_t blockX = 512;
  size_t blockY = (blocks+512-1)/512;
  dim3 threads(1024, 1);
  dim3 grid(blockX, blockY);
  KeFeature2col<<< grid, threads, 0, STREAM_DEFAULT >>>
           (numKernels, height, dataIm, blockH, blockW, width,
           strideH, strideW, paddingH, paddingW,
           outputH, outputW, dataCol);
  CHECK_SYNC("hl_expand_feature2col failed");
}

__global__ void KeCol2Feature(size_t n, const real* data_col, size_t height,
                              size_t width, size_t channels,
                              size_t blockH, size_t blockW,
                              size_t strideH, size_t strideW,
                              size_t paddingH, size_t paddingW,
                              size_t height_col, size_t width_col,
                              real* data_im, real alpha, real beta) {
  size_t index =
    (blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
  if (index < n) {
    real val = 0;
    int w = int(index % width);
    int h = int((index / width) % height);
    int c = int(index / (width * height));
    if ((w - (int)paddingW) >= 0 &&
        (w - (int)paddingW) < (width-2 * paddingW) &&
        (h - (int)paddingH) >= 0 &&
        (h - paddingH) < (height - 2 * paddingH)) {
      // compute the start and end of the output
      int w_col_start =
        (w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
      int w_col_end =
        min((int)(w / (int)strideW + 1), (int)(width_col));
      int h_col_start =
        (h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
      int h_col_end = min(int(h / strideH + 1), int(height_col));
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
          // the col location: [c * width * height + h_out, w_out]
          int c_col = int(c * blockH* blockW) + \
            (h - h_col * (int)strideH) * (int)blockW +
            (w - w_col * (int)strideW);
          val += data_col[(c_col * height_col + h_col) * width_col + w_col];
        }
      }
      h -= paddingH;
      w -= paddingW;
      real tD = data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
                          h*(width-2*paddingW) + w];
      data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
              h*(width-2*paddingW) + w] = alpha * val + beta*tD;
    }
  }
}

void hl_shrink_col2feature(const real * dataCol, size_t channels,
                           size_t height, size_t width,
                           size_t blockH, size_t blockW,
                           size_t strideH, size_t strideW,
                           size_t paddingH, size_t paddingW,
                           size_t outputH, size_t outputW,
                           real* dataIm, real alpha, real beta) {
  size_t numKernels = channels * (height + 2*paddingH) * (width + 2*paddingW);

  size_t blocks = (numKernels + 1024 -1) / 1024;
  size_t blockX = 512;
  size_t blockY = (blocks+512-1)/512;
  dim3 threads(1024, 1);
  dim3 grid(blockX, blockY);

  // To avoid involving atomic operations, we will launch one kernel per
  // bottom dimension, and then in the kernel add up the top dimensions.
  KeCol2Feature<<< grid, threads, 0, STREAM_DEFAULT >>>
           (numKernels, dataCol, height + 2*paddingH, width + 2*paddingW,
           channels, blockH, blockW, strideH, strideW, paddingH, paddingW,
           outputH, outputW, dataIm, alpha, beta);
  CHECK_SYNC("hl_shrink_col2feature failed");
}

__global__ void KeMaxPoolForward(int nthreads, const real* inputData,
                                 int channels, int height, int width,
                                 int pooledH, int pooledW,
                                 int ksize, int stride, int start,
                                 real* tgtData) {
  int index =  blockIdx.y * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    int pw = index % pooledW;
    int ph = (index / pooledW) % pooledH;
    int c = (index / pooledW / pooledH) % channels;
    int frameNum = blockIdx.x;
    int hstart = ph * stride + start;
    int hend = min(hstart + ksize, height);
    int wstart = pw * stride + start;
    int wend = min(wstart + ksize, width);
    real maxval = -FLT_MAX;
    inputData += (frameNum * channels + c) * height * width;
    tgtData += (frameNum * channels) * pooledW * pooledH;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        if (maxval < inputData[h * width + w])
          maxval = inputData[h * width + w];
      }
    }
    tgtData[index] = maxval;
  }
}

void hl_maxpool_forward(int frameCnt, const real* inputData, int channels,
                        int height, int width, int pooledH, int pooledW,
                        int sizeX, int stride, int start, real* tgtData) {
  int num_kernels = pooledH * pooledW * channels;
  int blocksX = frameCnt;
  int blocksY = (num_kernels + 1024 -1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);
  KeMaxPoolForward<<< grid, threads, 0, STREAM_DEFAULT >>>
           (num_kernels, inputData, channels, height, width,
           pooledH, pooledW, sizeX, stride, start, tgtData);
  CHECK_SYNC("hl_maxpool_forward failed");
}

__global__ void KeMaxPoolBackward(int nthreads, const real* inputData,
                                  const real* outData, const real* outGrad,
                                  int channels, int height, int width,
                                  int pooledH, int pooledW, int sizeX,
                                  int stride, int start, real* targetGrad,
                                  real scaleA, real scaleB) {
  int index = blockIdx.y  * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    // find out the local index
    // find out the local offset
    int offsetW = index % width + start;
    int offsetH = (index / width) % height + start;
    int offsetC = (index / width / height) % channels;
    int frameNum = blockIdx.x;
    int phstart = (offsetH < sizeX) ? 0 : (offsetH - sizeX) / stride + 1;
    int phend = min(offsetH / stride + 1, pooledH);
    int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / stride + 1;
    int pwend = min(offsetW / stride + 1, pooledW);
    real gradient = 0;
    inputData += (frameNum * channels) * height * width;
    real input = inputData[index];
    outData += (frameNum * channels + offsetC) * pooledH * pooledW;
    outGrad += (frameNum * channels + offsetC) * pooledH * pooledW;
    targetGrad += (frameNum * channels) * height * width;
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        if (input == outData[ph * pooledW + pw]) {
          gradient += outGrad[ph * pooledW + pw];
        }
      }
    }
    targetGrad[index] =
      scaleB * targetGrad[index] + scaleA * gradient;
  }
}

void hl_maxpool_backward(int frameCnt, const real* inputData,
                        const real* outData, const real* outGrad,
                        int channels, int height, int width,
                        int pooledH, int pooledW, int sizeX,
                        int stride, int start, real* targetGrad,
                        real scaleA, real scaleB) {
  int num_kernels = (height - start) * (width - start) * channels;
  int blocksX = frameCnt;
  int blocksY = (num_kernels + 1024 -1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);

  KeMaxPoolBackward<<< grid, threads, 0, STREAM_DEFAULT >>>
           (num_kernels, inputData, outData, outGrad, channels,
           height, width, pooledH, pooledW, sizeX, stride, start,
           targetGrad, scaleA, scaleB);
  CHECK_SYNC("hl_maxpool_backward");
}

__global__ void KeAvePoolForward(int nthreads, const real* inputData,
                                 int channels, int height, int width,
                                 int pooledH, int pooledW, int sizeX,
                                 int stride, int start, real* tgtData) {
  int index = blockIdx.y * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    int pw = index % pooledW;
    int ph = (index / pooledW) % pooledH;
    int c = (index / pooledW / pooledH) % channels;
    int frameNum = blockIdx.x;
    int hstart = ph * stride + start;
    int hend = min(hstart + sizeX, height);
    int wstart = pw * stride + start;
    int wend = min(wstart + sizeX, width);
    real aveval = 0;
    inputData += (frameNum * channels + c) * height * width;
    tgtData += (frameNum * channels) * pooledH * pooledW;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        aveval += inputData[h * width + w];
      }
    }
    tgtData[index] = aveval / ((hend - hstart) * (wend - wstart));
  }
}

void hl_avgpool_forward(int frameCnt, const real* inputData, int channels,
                        int height, int width, int pooledH, int pooledW,
                        int sizeX, int stride, int start, real* tgtData) {
  int num_kernels = pooledH * pooledW * channels;
  int blocksX = frameCnt;
  int blocksY = (num_kernels + 1024 -1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);
  KeAvePoolForward<<< grid, threads, 0, STREAM_DEFAULT >>>
           (num_kernels, inputData, channels,
           height, width, pooledH, pooledW,
           sizeX, stride, start, tgtData);
  CHECK_SYNC("hl_avgpool_forward failed");
}

__global__ void KeAvgPoolBackward(int nthreads, const real* outGrad,
                                  int channels, int height, int width,
                                  int pooledH, int pooledW, int sizeX,
                                  int stride, int start, real* tgtGrad,
                                  real scaleA, real scaleB) {
  int index = blockIdx.y * blockDim.x + threadIdx.x;
  if (index < nthreads) {
    int offsetW = index % width + start;
    int offsetH = (index / width) % height + start;
    int offsetC = (index / width / height) % channels;
    int frameNum = blockIdx.x;
    int phstart = (offsetH < sizeX) ? 0 : (offsetH - sizeX) / stride + 1;
    int phend = min(offsetH / stride + 1, pooledH);
    int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / stride + 1;
    int pwend = min(offsetW / stride + 1, pooledW);
    real gradient = 0;
    outGrad += (frameNum * channels + offsetC) * pooledH * pooledW;
    tgtGrad += (frameNum * channels) * height * width;

    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
        // figure out the pooling size
        int poolsize = (min(ph * stride + sizeX, height) - ph * stride) *
            (min(pw * stride + sizeX, width) - pw * stride);
        gradient += outGrad[ph * pooledW + pw]/poolsize;
      }
    }
    tgtGrad[index] = scaleB * tgtGrad[index] + scaleA * gradient;
  }
}

void hl_avgpool_backward(int frameCnt, const real* outGrad,
                         int channels, int height, int width,
                         int pooledH, int pooledW, int sizeX,
                         int stride, int start, real* backGrad,
                         real scaleA, real scaleB) {
  int num_kernels = (height - start) * (width - start) * channels;
  int blocksX = frameCnt;
  int blocksY = (num_kernels + 1024 -1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);

  KeAvgPoolBackward <<< grid, threads, 0, STREAM_DEFAULT >>>
           (num_kernels, outGrad, channels, height, width,
           pooledH, pooledW, sizeX, stride, start, backGrad, scaleA, scaleB);
  CHECK_SYNC("hl_avgpool_backward failed");
}

__global__ void KeCMRNormFillScale(size_t nthreads, const real* in,
                                   real* scale, size_t channels,
                                   size_t height, size_t width, size_t size,
                                   real alpha) {
  size_t index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < nthreads) {
    // find out the local offset
    size_t w = index % width;
    size_t h = (index / width) % height;
    size_t n = index / width / height;
    size_t offset = (n * channels * height + h) * width + w;
    size_t step = height * width;
    in += offset;
    scale += offset;
    size_t head = 0;
    size_t pre_pad = (size - 1) / 2;
    size_t post_pad = size - pre_pad - 1;
    real accum_scale = 0;
    // fill the scale at [n, :, h, w]
    // accumulate values
    while (head < post_pad) {
      accum_scale += in[head * step] * in[head * step];
      ++head;
    }
    // until we reach size, nothing needs to be subtracted
    while (head < size) {
      accum_scale += in[head * step] * in[head * step];
      scale[(head - post_pad) * step] = 1. + accum_scale * alpha;
      ++head;
    }
    // both add and subtract
    while (head < channels) {
      accum_scale += in[head * step] * in[head * step];
      accum_scale -= in[(head - size) * step] * in[(head - size) * step];
      scale[(head - post_pad) * step] = 1. + accum_scale * alpha;
      ++head;
    }
    // subtract only
    while (head < channels + post_pad) {
      accum_scale -= in[(head - size) * step] * in[(head - size) * step];
      scale[(head - post_pad) * step] = 1. + accum_scale * alpha;
      ++head;
    }
  }
}

 __global__ void KeCMRNormOutput(size_t nthreads, const real* in,
                                 const real* scale, real negative_beta,
                                 real* out) {
  size_t index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < nthreads) {
    out[index] = in[index] * pow(scale[index], negative_beta);
  }
}

void hl_CMRNorm_forward(size_t frameCnt, const real* in, real* scale,
                        real* out, size_t channels,
                        size_t height, size_t width, size_t sizeX,
                        real alpha, real beta) {
  size_t threadsNum = frameCnt * height * width;
  size_t blocksX = (threadsNum + 1024 - 1) / 1024;
  size_t blocksY = 1;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);

  KeCMRNormFillScale<<<grid, threads, 0, STREAM_DEFAULT>>>
      (threadsNum, in, scale, channels, height, width, sizeX, alpha);

  threadsNum = frameCnt * height * width *channels;
  blocksX = (threadsNum + 1024 -1) / 1024;
  dim3 threads2(1024, 1);
  dim3 grid2(blocksX, blocksY);
  KeCMRNormOutput<<<grid2, threads2, 0, STREAM_DEFAULT>>>
           (threadsNum, in, scale, beta, out);
  CHECK_SYNC("hl_CMRNorm_forward");
}

__global__ void KeCMRNormDiff(size_t nthreads, const real* bottom_data,
                              const real* top_data, const real* scale,
                              const real* top_diff, size_t channels,
                              size_t height, size_t width, size_t size,
                              real negative_beta, real cache_ratio,
                              real* bottom_diff ) {
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  if (index < nthreads) {
    // find out the local offset
    size_t w = index % width;
    size_t h = (index / width) % height;
    size_t n = index / width / height;
    size_t offset = (n * channels * height + h) * width + w;
    size_t step = height * width;
    bottom_data += offset;
    top_data += offset;
    scale += offset;
    top_diff += offset;
    bottom_diff += offset;
    int head = 0;
    int pre_pad = size - (size + 1) / 2;
    int post_pad = size - pre_pad - 1;
    real accum_ratio = 0;
    // accumulate values
    while (head < post_pad) {
      accum_ratio += top_diff[head * step] *
        top_data[head * step] / scale[head * step];
      ++head;
    }
    // until we reach size, nothing needs to be subtracted
    while (head < size) {
      accum_ratio += top_diff[head * step] *
        top_data[head * step] / scale[head * step];
      bottom_diff[(head - post_pad) * step] +=
        top_diff[(head - post_pad) * step] *
        pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
        bottom_data[(head - post_pad) * step] * accum_ratio;
      ++head;
    }
    // both add and subtract
    while (head < channels) {
      accum_ratio += top_diff[head * step] * top_data[head * step] /
          scale[head * step];
      accum_ratio -= top_diff[(head - size) * step] *
          top_data[(head - size) * step] / scale[(head - size) * step];
      bottom_diff[(head - post_pad) * step] +=
        top_diff[(head - post_pad) * step] *
        pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
        bottom_data[(head - post_pad) * step] * accum_ratio;
      ++head;
    }
    // subtract only
    while (head < channels + post_pad) {
      accum_ratio -= top_diff[(head - size) * step] *
          top_data[(head - size) * step] / scale[(head - size) * step];
      bottom_diff[(head - post_pad) * step] +=
        top_diff[(head - post_pad) * step] *
        pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
        bottom_data[(head - post_pad) * step] * accum_ratio;
      ++head;
    }
  }
}

void hl_CMRNorm_backward(size_t frameCnt, const real* inV,
                         const real* scale,
                         const real* outV, const real* outDiff,
                         real *inDiff, size_t channels,
                         size_t height, size_t width, size_t sizeX,
                         real alpha, real beta) {
  size_t threadsNum = frameCnt * height * width;
  size_t blocksX = (threadsNum + 1024 -1) / 1024;
  size_t blocksY = 1;
  dim3 threads(1024, 1);
  dim3 grid(blocksX, blocksY);
  KeCMRNormDiff <<<grid, threads, 0, STREAM_DEFAULT>>>
           (threadsNum, inV, outV, scale, outDiff, channels,
           height, width, sizeX, alpha, beta, inDiff);
  CHECK_SYNC("hl_CMRNorm_backward");
}