test_matmul_api.cc 6.6 KB
Newer Older
Z
zyfncg 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/phi/api/backward/backward_api.h"
19
#include "paddle/phi/api/include/api.h"
Z
zyfncg 已提交
20

21 22 23 24 25
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
Z
zyfncg 已提交
26

27 28
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/device_context.h"
29 30 31 32 33 34 35 36 37

PD_DECLARE_KERNEL(full, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(matmul_double_grad, CPU, ALL_LAYOUT);

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(matmul, GPU, ALL_LAYOUT);
#endif

38 39 40
namespace paddle {
namespace tests {

Z
zyfncg 已提交
41
namespace framework = paddle::framework;
42
using DDim = phi::DDim;
Z
zyfncg 已提交
43 44 45

TEST(API, matmul_cpu) {
  // 1. create tensor
46
  const auto alloc = std::make_unique<paddle::experimental::DefaultAllocator>(
Z
zyfncg 已提交
47
      paddle::platform::CPUPlace());
48
  auto dense_x = std::make_shared<phi::DenseTensor>(
49
      alloc.get(),
50 51 52
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
Z
zyfncg 已提交
53

54 55
  auto* dense_x_data =
      dense_x->mutable_data<float>(paddle::platform::CPUPlace());
Z
zyfncg 已提交
56

57
  auto dense_y = std::make_shared<phi::DenseTensor>(
58
      alloc.get(),
59 60 61
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
62 63
  auto* dense_y_data =
      dense_y->mutable_data<float>(paddle::platform::CPUPlace());
Z
zyfncg 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77

  for (size_t i = 0; i < 9; ++i) {
    dense_x_data[i] = 1.0;
    dense_y_data[i] = 2.0;
  }
  std::vector<float> sum(9, 6.0);

  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::matmul(x, y, false, false);

  // 3. check result
78 79 80
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 3);
Z
zyfncg 已提交
81
  ASSERT_EQ(out.numel(), 9);
82 83
  ASSERT_EQ(out.type(), phi::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), phi::DataLayout::NCHW);
Z
zyfncg 已提交
84 85
  ASSERT_EQ(out.initialized(), true);

86
  auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
Z
zyfncg 已提交
87 88 89 90 91 92 93 94 95 96

  for (size_t i = 0; i < 9; i++) {
    ASSERT_NEAR(sum[i], dense_out->data<float>()[i], 1e-6f);
  }
}

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
TEST(API, matmul_cuda) {
  // Prepare CPU Dense Tensor
  const auto alloc_cpu =
97
      std::make_unique<paddle::experimental::DefaultAllocator>(
Z
zyfncg 已提交
98
          paddle::platform::CPUPlace());
99
  auto ref_x = std::make_shared<phi::DenseTensor>(
100
      alloc_cpu.get(),
101 102 103
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
Z
zyfncg 已提交
104

105
  auto* ref_x_data = ref_x->mutable_data<float>(paddle::platform::CPUPlace());
Z
zyfncg 已提交
106

107
  auto ref_y = std::make_shared<phi::DenseTensor>(
108
      alloc_cpu.get(),
109 110 111
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
112
  auto* ref_y_data = ref_y->mutable_data<float>(paddle::platform::CPUPlace());
Z
zyfncg 已提交
113 114 115 116 117 118 119 120 121

  for (size_t i = 0; i < 9; ++i) {
    ref_x_data[i] = 1.0;
    ref_y_data[i] = 2.0;
  }
  std::vector<float> sum(9, 6.0);

  // 1. create tensor
  const auto alloc_cuda =
122
      std::make_unique<paddle::experimental::DefaultAllocator>(
Z
zyfncg 已提交
123
          paddle::platform::CUDAPlace());
124
  auto dense_x = std::make_shared<phi::DenseTensor>(
125
      alloc_cuda.get(),
126 127 128
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
Z
zyfncg 已提交
129

130
  auto dense_y = std::make_shared<phi::DenseTensor>(
131
      alloc_cuda.get(),
132 133 134
      phi::DenseTensorMeta(phi::DataType::FLOAT32,
                           phi::make_ddim({3, 3}),
                           phi::DataLayout::NCHW));
Z
zyfncg 已提交
135 136 137

  auto& pool = paddle::platform::DeviceContextPool::Instance();
  auto place = paddle::platform::CUDAPlace();
138
  auto* dev_ctx = static_cast<const phi::GPUContext*>(pool.GetByPlace(place));
Z
zyfncg 已提交
139

140 141
  phi::Copy(*dev_ctx, *ref_x.get(), phi::GPUPlace(), false, dense_x.get());
  phi::Copy(*dev_ctx, *ref_y.get(), phi::GPUPlace(), false, dense_y.get());
Z
zyfncg 已提交
142 143 144 145 146 147 148 149

  paddle::experimental::Tensor x(dense_x);
  paddle::experimental::Tensor y(dense_y);

  // 2. test API
  auto out = paddle::experimental::matmul(x, y, false, false);

  // 3. check result
150 151 152
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
  ASSERT_EQ(out.dims()[1], 3);
Z
zyfncg 已提交
153
  ASSERT_EQ(out.numel(), 9);
154 155
  ASSERT_EQ(out.type(), phi::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), phi::DataLayout::NCHW);
Z
zyfncg 已提交
156 157
  ASSERT_EQ(out.initialized(), true);

158
  auto dense_out = std::dynamic_pointer_cast<phi::DenseTensor>(out.impl());
Z
zyfncg 已提交
159

160
  auto ref_out = std::make_shared<phi::DenseTensor>(
161
      alloc_cpu.get(),
162 163
      phi::DenseTensorMeta(
          phi::DataType::FLOAT32, out.dims(), phi::DataLayout::NCHW));
Z
zyfncg 已提交
164

165
  phi::Copy(*dev_ctx, *dense_out.get(), phi::CPUPlace(), false, ref_out.get());
Z
zyfncg 已提交
166 167 168 169 170 171 172

  for (size_t i = 0; i < 9; i++) {
    ASSERT_NEAR(sum[i], ref_out->data<float>()[i], 1e-6f);
  }
}

#endif
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
TEST(API, matmul_double_grad) {
  // 1. create tensor
  auto x = paddle::experimental::full({3, 3}, 1.0);
  auto y = paddle::experimental::full({3, 3}, 2.0);
  auto out_grad = paddle::experimental::full({3, 3}, 2.0);
  auto dx_grad = paddle::experimental::full({3, 3}, 2.0);

  // 2. test API
  const auto out = paddle::experimental::matmul_double_grad(
      x, y, out_grad, dx_grad, {}, false, false);

  // 3. check result
  ASSERT_EQ(out.size(), 3UL);
  ASSERT_EQ(out[0].size(), 1UL);
  ASSERT_EQ(out[1].size(), 1UL);
  ASSERT_EQ(out[2].size(), 1UL);
  ASSERT_EQ(out[0][0].dims()[1], 3);
  ASSERT_EQ(out[0][0].numel(), 9);
  ASSERT_EQ(out[1][0].numel(), 9);
  ASSERT_EQ(out[2][0].numel(), 9);
  ASSERT_EQ(out[0][0].type(), phi::DataType::FLOAT32);
  ASSERT_EQ(out[0][0].layout(), phi::DataLayout::NCHW);
  ASSERT_EQ(out[1][0].initialized(), true);
  ASSERT_EQ(out[2][0].initialized(), true);
}

200 201
}  // namespace tests
}  // namespace paddle