test_understand_sentiment.py 9.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from __future__ import print_function
D
dzhwinter 已提交
15

16
import unittest
17
import paddle.v2.fluid as fluid
18 19
import paddle.v2 as paddle
import contextlib
20
import math
21
import numpy as np
22
import sys
23 24 25 26


def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
                    hid_dim=32):
27 28
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    conv_3 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=3,
        act="tanh",
        pool_type="sqrt")
    conv_4 = fluid.nets.sequence_conv_pool(
        input=emb,
        num_filters=hid_dim,
        filter_size=4,
        act="tanh",
        pool_type="sqrt")
    prediction = fluid.layers.fc(input=[conv_3, conv_4],
                                 size=class_dim,
                                 act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
47
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
48 49


Y
Yu Yang 已提交
50 51 52
def stacked_lstm_net(data,
                     label,
                     input_dim,
Q
QI JUN 已提交
53 54 55 56 57 58
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    assert stacked_num % 2 == 1

59 60
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
Q
QI JUN 已提交
61 62 63
    # add bias attr

    # TODO(qijun) linear act
64 65
    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
Q
QI JUN 已提交
66 67 68 69

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
70 71
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
Q
QI JUN 已提交
72 73 74
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

75 76
    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
Q
QI JUN 已提交
77

78 79 80 81 82
    prediction = fluid.layers.fc(input=[fc_last, lstm_last],
                                 size=class_dim,
                                 act='softmax')
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)
83
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
84
    return avg_cost, accuracy, prediction
Q
QI JUN 已提交
85

86

87 88 89 90 91 92
def create_random_lodtensor(lod, place, low, high):
    data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64")
    res = fluid.LoDTensor()
    res.set(data, place)
    res.set_lod([lod])
    return res
93

94

95
def train(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
96 97
    BATCH_SIZE = 128
    PASS_NUM = 5
Q
QI JUN 已提交
98 99 100
    dict_dim = len(word_dict)
    class_dim = 2

Y
Yu Yang 已提交
101 102 103
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    if not parallel:
        cost, acc_out, prediction = net_method(
            data, label, input_dim=dict_dim, class_dim=class_dim)
    else:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            cost, acc, _ = net_method(
                pd.read_input(data),
                pd.read_input(label),
                input_dim=dict_dim,
                class_dim=class_dim)
            pd.write_output(cost)
            pd.write_output(acc)

        cost, acc = pd()
        cost = fluid.layers.mean(x=cost)
        acc_out = fluid.layers.mean(x=acc)
        prediction = None
        assert save_dirname is None

    adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
    adagrad.minimize(cost)
Q
QI JUN 已提交
128 129 130 131 132

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=BATCH_SIZE)
133
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
134
    exe = fluid.Executor(place)
Y
Yu Yang 已提交
135
    feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
Q
QI JUN 已提交
136

137
    exe.run(fluid.default_startup_program())
Q
QI JUN 已提交
138 139 140

    for pass_id in xrange(PASS_NUM):
        for data in train_data():
Y
Yu Yang 已提交
141 142 143
            cost_val, acc_val = exe.run(fluid.default_main_program(),
                                        feed=feeder.feed(data),
                                        fetch_list=[cost, acc_out])
144 145
            print("cost=" + str(cost_val) + " acc=" + str(acc_val))
            if cost_val < 0.4 and acc_val > 0.8:
146 147 148
                if save_dirname is not None:
                    fluid.io.save_inference_model(save_dirname, ["words"],
                                                  prediction, exe)
149
                return
150 151
            if math.isnan(float(cost_val)):
                sys.exit("got NaN loss, training failed.")
152 153 154 155
    raise AssertionError("Cost is too large for {0}".format(
        net_method.__name__))


156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # Use fluid.io.load_inference_model to obtain the inference program desc,
    # the feed_target_names (the names of variables that will be feeded 
    # data using feed operators), and the fetch_targets (variables that 
    # we want to obtain data from using fetch operators).
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

    lod = [0, 4, 10]
    word_dict = paddle.dataset.imdb.word_dict()
    tensor_words = create_random_lodtensor(
        lod, place, low=0, high=len(word_dict) - 1)

    # Construct feed as a dictionary of {feed_target_name: feed_target_data}
    # and results will contain a list of data corresponding to fetch_targets.
    assert feed_target_names[0] == "words"
    results = exe.run(inference_program,
                      feed={feed_target_names[0]: tensor_words},
                      fetch_list=fetch_targets,
                      return_numpy=False)
    print(results[0].lod())
    np_data = np.array(results[0])
    print("Inference Shape: ", np_data.shape)
    print("Inference results: ", np_data)


188
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
189 190 191
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

192 193 194 195 196 197
    train(
        word_dict,
        net_method,
        use_cuda,
        parallel=parallel,
        save_dirname=save_dirname)
198 199 200
    infer(use_cuda, save_dirname)


201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
class TestUnderstandSentiment(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.word_dict = paddle.dataset.imdb.word_dict()

    @contextlib.contextmanager
    def new_program_scope(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield

    def test_conv_cpu(self):
        with self.new_program_scope():
217 218 219 220 221
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                save_dirname="understand_sentiment.inference.model")
222

223 224 225 226 227 228 229 230 231
    def test_conv_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=False,
                parallel=True)

    @unittest.skip(reason="make CI faster")
232 233 234 235
    def test_stacked_lstm_cpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=stacked_lstm_net, use_cuda=False)

236 237 238 239 240 241 242 243
    def test_stacked_lstm_cpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=False,
                parallel=True)

244 245
    def test_conv_gpu(self):
        with self.new_program_scope():
246 247 248 249 250 251 252 253 254 255 256 257 258
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                save_dirname="understand_sentiment.inference.model")

    def test_conv_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=convolution_net,
                use_cuda=True,
                parallel=True)
259

260
    @unittest.skip(reason="make CI faster")
261 262 263
    def test_stacked_lstm_gpu(self):
        with self.new_program_scope():
            main(self.word_dict, net_method=stacked_lstm_net, use_cuda=True)
Q
QI JUN 已提交
264

265 266 267 268 269 270 271 272
    def test_stacked_lstm_gpu_parallel(self):
        with self.new_program_scope():
            main(
                self.word_dict,
                net_method=stacked_lstm_net,
                use_cuda=True,
                parallel=True)

Q
QI JUN 已提交
273 274

if __name__ == '__main__':
275
    unittest.main()