input.py 3.7 KB
Newer Older
Y
yukavio 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yukavio 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

from __future__ import print_function
import warnings
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import core
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype

__all__ = ['one_hot']


def one_hot(x, num_classes, name=None):
    """
    :alias_main: paddle.nn.functional.one_hot
	:alias: paddle.nn.functional.one_hot,paddle.nn.functional.common.one_hot
	:old_api: paddle.fluid.one_hot

    The operator converts each id in the input 'x' to an one-hot vector with a
    num_classes length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor is generated by appending num_classes dimension
    behind the last dimension of the 'x' shape.

    .. code-block:: text

        Example 1:

        input:
Y
yukavio 已提交
43
            x.shape = [4]
Y
yukavio 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
            x.data = [1, 1, 3, 0]
            num_classes = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2:

        input:
Y
yukavio 已提交
57
            x.shape = [4]
Y
yukavio 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            x.data = [1, 1, 5, 0]
            num_classes = 4

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than num_classes,
            so it throws an exception.


    Args:
        x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
            which contains at least one dimension. The data type is int32 or int64.
        num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
            is word id, num_classes is generally the dictionary size.

    Returns:
        Tensor: The one-hot representations of 'x'. A Tensor with type float32.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            # Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.one_hot(x=label, num_classes=4)
    """

    if in_dygraph_mode():
        return core.ops.one_hot_v2(x, 'depth', num_classes,
                                   'allow_out_of_range', False)
    else:
Y
yukavio 已提交
88 89 90 91
        check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
        helper = LayerHelper("one_hot_v2", **locals())

        one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
Y
yukavio 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        if not isinstance(num_classes, Variable):
            # user attribute 
            inputs = {'X': x}
            attrs = {'depth': num_classes, 'allow_out_of_range': False}
        else:
            num_classes.stop_gradient = True
            inputs = {'X': x, 'depth_tensor': num_classes}
            attrs = {'allow_out_of_range': False}
        helper.append_op(
            type="one_hot_v2",
            inputs=inputs,
            attrs=attrs,
            outputs={'Out': one_hot_out},
            stop_gradient=True)
        return one_hot_out