process_group_nccl.py 17.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import random
import numpy as np
import os
import shutil

import paddle
from paddle.fluid import core
from datetime import timedelta
import paddle.fluid.core as core
from paddle.fluid.framework import _test_eager_guard
from paddle.fluid.dygraph.parallel import ParallelEnv
29
import paddle.distributed as dist
30 31 32


def init_process_group(strategy=None):
33 34 35
    nranks = ParallelEnv().nranks
    rank = ParallelEnv().local_rank
    is_master = True if rank == 0 else False
36
    pg_group = dist.init_parallel_env()
37

38
    return pg_group.process_group
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70


class TestProcessGroupFp32(unittest.TestCase):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float32"
        self.shape = (2, 10, 5)

    def test_create_process_group_nccl(self):
        with _test_eager_guard():
            paddle.set_device('gpu:%d' %
                              paddle.distributed.ParallelEnv().dev_id)

            pg = init_process_group()
            print("rank:", pg.rank(), "size:", pg.size(), "name:", pg.name())
            print("test new group api ok")

            # test allreduce sum
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
71
                task = dist.all_reduce(tensor_x)
72 73
                assert np.array_equal(tensor_x, sum_result)
            else:
74
                task = dist.all_reduce(tensor_y)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
                assert np.array_equal(tensor_y, sum_result)

            print("test allreduce sum api ok")

            # test allreduce max
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            max_result = paddle.maximum(tensor_x, tensor_y)

            if pg.rank() == 0:
90 91
                task = dist.all_reduce(
                    tensor_x, dist.ReduceOp.MAX, use_calc_stream=False)
92 93 94
                task.wait()
                assert np.array_equal(tensor_x, max_result)
            else:
95 96
                task = dist.all_reduce(
                    tensor_y, dist.ReduceOp.MAX, use_calc_stream=False)
97 98 99 100 101
                task.wait()
                assert np.array_equal(tensor_y, max_result)

            print("test allreduce max api ok")

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            # test allreduce min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            min_result = paddle.minimum(tensor_x, tensor_y)

            if pg.rank() == 0:
                task = dist.all_reduce(
                    tensor_x, dist.ReduceOp.MIN, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_x, min_result)
            else:
                task = dist.all_reduce(
                    tensor_y, dist.ReduceOp.MIN, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_y, min_result)

            print("test allreduce min api ok")

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
            # test allreduce prod
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            prod_result = np.multiply(x, y)

            if pg.rank() == 0:
                task = dist.all_reduce(
                    tensor_x, dist.ReduceOp.PROD, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_x, prod_result)
            else:
                task = dist.all_reduce(
                    tensor_y, dist.ReduceOp.PROD, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_y, prod_result)

            print("test allreduce prod api ok")

148 149 150 151 152 153 154 155 156 157
            # test broadcast
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            broadcast_result = paddle.assign(tensor_x)
            if pg.rank() == 0:
158
                task = dist.broadcast(tensor_x, 0, use_calc_stream=False)
159 160 161 162 163
                task.synchronize()
                paddle.device.cuda.synchronize()
                assert task.is_completed()
                assert np.array_equal(broadcast_result, tensor_x)
            else:
164
                task = dist.broadcast(tensor_y, 0)
165 166 167 168 169
                paddle.device.cuda.synchronize()
                assert np.array_equal(broadcast_result, tensor_y)

            print("test broadcast api ok")

B
Baibaifan 已提交
170 171 172
            # test barrier
            # rank 0
            if pg.rank() == 0:
173
                dist.barrier()
B
Baibaifan 已提交
174 175 176 177 178 179 180
            # rank 1
            else:
                task = pg.barrier()
                task.wait()

            print("test barrier api ok\n")

181
            # test allgather
B
Baibaifan 已提交
182 183
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
184 185 186 187 188 189 190 191 192 193 194 195 196
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            out_shape = list(self.shape)
            out_shape[0] *= 2
            out = np.random.random(out_shape).astype(self.dtype)
            tensor_out = paddle.to_tensor(out)
            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.cuda.synchronize()
            # rank 1
            else:
197 198 199 200 201
                tensor_out_list = [
                    paddle.empty_like(tensor_x), paddle.empty_like(tensor_x)
                ]
                task = dist.all_gather(
                    tensor_out_list, tensor_y, use_calc_stream=False)
202
                paddle.device.cuda.synchronize()
203
                tensor_out = paddle.concat(tensor_out_list)
204 205 206 207 208 209 210
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
            out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2],
                                 [out_shape[0]])
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            print("test allgather api ok\n")

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
            if pg.rank() == 0:
                task = pg.all_gather(tensor_x, tensor_out)
                task.wait()
                paddle.device.cuda.synchronize()
            # rank 1
            else:
                tensor_out_list = []
                task = dist.all_gather(
                    tensor_out_list, tensor_y, use_calc_stream=False)
                paddle.device.cuda.synchronize()
                tensor_out = paddle.concat(tensor_out_list)
            out_1 = paddle.slice(tensor_out, [0], [0], [out_shape[0] // 2])
            out_2 = paddle.slice(tensor_out, [0], [out_shape[0] // 2],
                                 [out_shape[0]])
            assert np.array_equal(tensor_x, out_1)
            assert np.array_equal(tensor_y, out_2)
            print("test allgather api2 ok\n")

229 230 231 232 233 234
            # test alltoall
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            out1 = np.random.random(self.shape).astype(self.dtype)
            out2 = np.random.random(self.shape).astype(self.dtype)
B
Baibaifan 已提交
235
            tensor_x = paddle.to_tensor(x)
236 237 238 239 240 241 242
            tensor_y = paddle.to_tensor(y)
            tensor_out1 = paddle.to_tensor(out1)
            tensor_out2 = paddle.to_tensor(out2)
            raw_tensor_x_2 = paddle.slice(tensor_x, [0], [self.shape[0] // 2],
                                          [self.shape[0]])
            raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0],
                                          [self.shape[0] // 2])
B
Baibaifan 已提交
243
            if pg.rank() == 0:
244
                task = pg.alltoall(tensor_x, tensor_out1)
B
Baibaifan 已提交
245 246 247
                task.wait()
            # rank 1
            else:
248 249 250 251
                in_1, in_2 = paddle.split(tensor_y, 2)
                out_1, out_2 = paddle.split(tensor_out2, 2)
                out_tensor_list = [out_1, out_2]
                task = dist.alltoall([in_1, in_2], out_tensor_list)
B
Baibaifan 已提交
252
                paddle.device.cuda.synchronize()
253
                tensor_out2 = paddle.concat(out_tensor_list)
254 255 256 257 258 259 260 261 262
            out1_2 = paddle.slice(tensor_out1, [0], [self.shape[0] // 2],
                                  [self.shape[0]])
            out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2])
            if pg.rank() == 0:
                assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
            else:
                assert np.array_equal(out2_1, raw_tensor_x_2)
            print("test alltoall api ok\n")

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            out1 = np.random.random(self.shape).astype(self.dtype)
            out2 = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            tensor_out1 = paddle.to_tensor(out1)
            tensor_out2 = paddle.to_tensor(out2)
            raw_tensor_x_2 = paddle.slice(tensor_x, [0], [self.shape[0] // 2],
                                          [self.shape[0]])
            raw_tensor_y_1 = paddle.slice(tensor_y, [0], [0],
                                          [self.shape[0] // 2])
            if pg.rank() == 0:
                task = pg.alltoall(tensor_x, tensor_out1)
                task.wait()
            # rank 1
            else:
                in_1, in_2 = paddle.split(tensor_y, 2)
                out_1, out_2 = paddle.split(tensor_out2, 2)
                out_tensor_list = []
                task = dist.alltoall([in_1, in_2], out_tensor_list)
                paddle.device.cuda.synchronize()
                tensor_out2 = paddle.concat(out_tensor_list)
            out1_2 = paddle.slice(tensor_out1, [0], [self.shape[0] // 2],
                                  [self.shape[0]])
            out2_1 = paddle.slice(tensor_out2, [0], [0], [self.shape[0] // 2])
            if pg.rank() == 0:
                assert np.array_equal(out1_2.numpy(), raw_tensor_y_1.numpy())
            else:
                assert np.array_equal(out2_1, raw_tensor_x_2)
            print("test alltoall api2 ok\n")

295 296 297 298 299 300 301 302
            # test Reduce
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            sum_result = tensor_x + tensor_y
            if pg.rank() == 0:
303
                task = dist.reduce(tensor_x, 0, use_calc_stream=True)
304 305 306
                paddle.device.cuda.synchronize()
            # rank 1
            else:
307
                task = dist.reduce(tensor_y, 0, use_calc_stream=False)
308 309 310 311 312 313
                task.wait()
                paddle.device.cuda.synchronize()
            if pg.rank() == 0:
                assert np.array_equal(tensor_x, sum_result)
            print("test reduce sum api ok\n")

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            # test reduce max
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            max_result = paddle.maximum(tensor_x, tensor_y)

            if pg.rank() == 0:
                task = dist.reduce(
                    tensor_x, 0, dist.ReduceOp.MAX, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_x, max_result)
            else:
                task = dist.reduce(
                    tensor_y, 0, dist.ReduceOp.MAX, use_calc_stream=False)
                task.wait()

            print("test reduce max api ok")

            # test reduce min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            min_result = paddle.minimum(tensor_x, tensor_y)

            if pg.rank() == 0:
                task = dist.reduce(
                    tensor_x, 0, dist.ReduceOp.MIN, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_x, min_result)
            else:
                task = dist.reduce(
                    tensor_y, 0, dist.ReduceOp.MIN, use_calc_stream=False)
                task.wait()

            print("test reduce min api ok")

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            # test reduce product
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            prod_result = np.multiply(x, y)

            if pg.rank() == 0:
                task = dist.reduce(
                    tensor_x, 0, dist.ReduceOp.PROD, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_x, prod_result)
            else:
                task = dist.reduce(
                    tensor_y, 0, dist.ReduceOp.PROD, use_calc_stream=False)
                task.wait()

            print("test reduce prod api ok")
379 380 381 382 383 384 385 386 387
            # test Scatter
            # rank 0
            in_shape = list(self.shape)
            in_shape[0] *= 2
            x = np.random.random(in_shape).astype(self.dtype)
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            tensor_y = paddle.to_tensor(y)
            if pg.rank() == 0:
388 389 390 391
                in_1, in_2 = paddle.split(tensor_x, 2)
                task = dist.scatter(
                    tensor_y, [in_1, in_2], 0, use_calc_stream=True)
                #task.wait()
392 393 394
                paddle.device.cuda.synchronize()
            # rank 1
            else:
395
                task = dist.scatter(tensor_y, [], 0, use_calc_stream=False)
396 397 398 399 400 401 402 403 404 405
                task.wait()
                paddle.device.cuda.synchronize()
            out1 = paddle.slice(tensor_x, [0], [0], [self.shape[0]])
            out2 = paddle.slice(tensor_x, [0], [self.shape[0]],
                                [self.shape[0] * 2])
            if pg.rank() == 0:
                assert np.array_equal(tensor_y, out1)
            else:
                assert np.array_equal(tensor_y, out2)
            print("test scatter api ok\n")
B
Baibaifan 已提交
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            # test send min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            if pg.rank() == 0:
                task = dist.send(tensor_x, 1, use_calc_stream=False)
                task.wait()
            else:
                task = dist.recv(tensor_y, 0, use_calc_stream=False)
                task.wait()
                assert np.array_equal(tensor_y, tensor_x)

            print("test send api ok")

            # test send min
            # rank 0
            x = np.random.random(self.shape).astype(self.dtype)
            tensor_x = paddle.to_tensor(x)
            # rank 1
            y = np.random.random(self.shape).astype(self.dtype)
            tensor_y = paddle.to_tensor(y)

            if pg.rank() == 0:
                task = dist.send(tensor_x, 1, use_calc_stream=True)
            else:
                task = dist.recv(tensor_y, 0, use_calc_stream=True)
                assert np.array_equal(tensor_y, tensor_x)

            print("test send api ok")

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

class TestProcessGroupFp16(TestProcessGroupFp32):
    def setUp(self):
        paddle.seed(2022)
        random.seed(2022)
        np.random.seed(2022)
        self.config()

    def config(self):
        self.dtype = "float16"
        self.shape = (4, 20, 20)


if __name__ == "__main__":
    unittest.main()