test_regularizer.py 9.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
C
chengduo 已提交
18 19 20 21 22 23
from functools import partial
import contextlib
import numpy as np
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
24 25 26 27
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
from paddle.fluid.backward import append_backward
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52


class TestL2DecayRegularizer(unittest.TestCase):
    def test_l2decay_regularizer(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L2DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L2DecayRegularizer))
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
53 54 55 56
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
57
        params_grads = append_backward(mean_out)
58 59 60 61 62
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 2)
C
chengduo 已提交
63
        self.assertEqual(block.ops[-1].type, 'sum')
64 65 66
        self.assertEqual(block.ops[-2].type, 'scale')


67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class TestL1DecayRegularizer(unittest.TestCase):
    def test_l2decay_regularizer(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L1DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer))
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
90 91 92 93
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
94
        params_grads = append_backward(mean_out)
95 96 97 98 99
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 3)
C
chengduo 已提交
100
        self.assertEqual(block.ops[-1].type, 'sum')
101 102 103 104
        self.assertEqual(block.ops[-2].type, 'scale')
        self.assertEqual(block.ops[-3].type, 'sign')


C
chengduo 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestRegularizer(unittest.TestCase):
    def setUp(self):
        self.word_dict = paddle.dataset.imdb.word_dict()
        reader = paddle.batch(
            paddle.dataset.imdb.train(self.word_dict), batch_size=8)()
        self.train_data = [next(reader) for _ in range(5)]

    def get_places(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    @contextlib.contextmanager
    def scope_prog_guard(self, main_prog, startup_prog):
        scope = fluid.core.Scope()
        with fluid.unique_name.guard():
            with fluid.scope_guard(scope):
                with fluid.program_guard(main_prog, startup_prog):
                    yield

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_l2decay_regularizer(self, place, model):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        startup_prog.random_seed = 1
        with self.scope_prog_guard(
                main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

            avg_cost = model(data, label, len(self.word_dict))

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.1,
                regularization=fluid.regularizer.L2Decay(1.0))
            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def check_l2decay(self, place, model):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        startup_prog.random_seed = 1
        with self.scope_prog_guard(
                main_prog=main_prog, startup_prog=startup_prog):
            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

            avg_cost_l2 = model(data, label, len(self.word_dict))

            param_list = fluid.default_main_program().block(0).all_parameters()
            para_sum = []
            for para in param_list:
                para_mul = fluid.layers.square(x=para)
                para_sum.append(fluid.layers.reduce_sum(input=para_mul))
            avg_cost_l2 += fluid.layers.sums(para_sum) * .5

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
            optimizer.minimize(avg_cost_l2)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_l2(self):
        for place in self.get_places():
            dense_sparse_p_sum = []
            for sparse in [True, False]:
                model = partial(bow_net, is_sparse=sparse)
                framework_l2 = self.check_l2decay_regularizer(place, model)
                l2 = self.check_l2decay(place, model)
                assert len(l2) == len(framework_l2)
                for i in range(len(l2)):
                    assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
                dense_sparse_p_sum.append(framework_l2)

            assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
            for i in range(len(dense_sparse_p_sum[0])):
                assert np.isclose(
                    a=dense_sparse_p_sum[0][i],
                    b=dense_sparse_p_sum[1][i],
                    rtol=5e-5)


234 235
if __name__ == '__main__':
    unittest.main()