psroi_pool_op.h 10.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class CPUPSROIPoolOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* out = ctx.Output<framework::Tensor>("Out");

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");
    auto output_channels = ctx.Attr<int>("output_channels");

    auto in_dims = in->dims();
    int batch_size = in_dims[0];
    int input_channels = in_dims[1];
    int height = in_dims[2];
    int width = in_dims[3];
    int rois_num = rois->dims()[0];

    auto in_stride = framework::stride(in_dims);
    auto roi_stride = framework::stride(rois->dims());
    auto out_stride = framework::stride(out->dims());

    const T* input_data = in->data<T>();

    framework::Tensor rois_batch_id_list;
    rois_batch_id_list.Resize({rois_num});
    int* rois_batch_id_data =
        rois_batch_id_list.mutable_data<int>(ctx.GetPlace());

    auto rois_lod = rois->lod().back();
    int rois_batch_size = rois_lod.size() - 1;
    PADDLE_ENFORCE_EQ(
        rois_batch_size, batch_size,
        "the rois_batch_size and input(X) batch_size should be the same.");
    int rois_num_with_lod = rois_lod[rois_batch_size];
    PADDLE_ENFORCE_EQ(rois_num_with_lod, rois_num,
                      "the rois_num from input and lod must be the same");

    PADDLE_ENFORCE_EQ(input_channels,
                      output_channels * pooled_height * pooled_width,
                      "the channels of input X should equal the product of "
                      "output_channels x pooled_height x pooled_width");

    // calculate batch id index for each roi according to LoD
    for (int n = 0; n < rois_batch_size; ++n) {
      for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
        rois_batch_id_data[i] = n;
      }
    }

    T* output_data = out->mutable_data<T>(ctx.GetPlace());
    const T* input_rois = rois->data<T>();

    // calculate psroipooling, parallel processing can be implemented per ROI
    for (int n = 0; n < rois_num; ++n) {
      // set roi batch id
      int roi_batch_id = rois_batch_id_data[n];

      // [start, end) interval for spatial sampling
      const T* offset_input_rois = input_rois + n * 4;
      T roi_start_w =
          static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
      T roi_start_h =
          static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
      T roi_end_w =
          static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
      T roi_end_h =
          static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;

      // Force too small rois to be 1 x 1
      T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
      T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);

      // Compute bin size w and h at input feature map
      T bin_size_h = roi_height / static_cast<T>(pooled_height);
      T bin_size_w = roi_width / static_cast<T>(pooled_width);

      // calculate each pixel of the output feature map.
      int out_roi_offset = n * out_stride[0];
      for (int c = 0; c < output_channels; ++c) {
        // per category
        int out_plane_offset = out_roi_offset + c * out_stride[1];
        for (int ph = 0; ph < pooled_height; ++ph) {
          int out_row_offset = out_plane_offset + ph * out_stride[2];
          for (int pw = 0; pw < pooled_width; ++pw) {
            // calculate w and h at input feature map
            int hstart = floor(static_cast<T>(ph) * bin_size_h + roi_start_h);
            int wstart = floor(static_cast<T>(pw) * bin_size_w + roi_start_w);
            int hend = ceil(static_cast<T>(ph + 1) * bin_size_h + roi_start_h);
            int wend = ceil(static_cast<T>(pw + 1) * bin_size_w + roi_start_w);
            //  Add roi offsets and clip to input boundaries
            hstart = std::min(std::max(hstart, 0), height);
            wstart = std::min(std::max(wstart, 0), width);
            hend = std::min(std::max(hend, 0), height);
            wend = std::min(std::max(wend, 0), width);

            int output_index = out_row_offset + pw;
            int input_channel = (c * pooled_height + ph) * pooled_width + pw;
            int input_plane_offset =
                roi_batch_id * in_stride[0] + input_channel * in_stride[1];
            const T* offset_input_data = input_data + input_plane_offset;
            T out_sum = 0.;
            bool is_empty = (hend <= hstart) || (wend <= wstart);
            for (int ih = hstart; ih < hend; ++ih) {
              for (int iw = wstart; iw < wend; ++iw) {
                int input_index = ih * in_stride[2] + iw;
                out_sum += offset_input_data[input_index];
              }
            }
            T bin_area = (hend - hstart) * (wend - wstart);
            output_data[output_index] = is_empty ? 0. : out_sum / bin_area;
          }
        }
      }
    }
    return;
  }
};

template <typename DeviceContext, typename T>
class CPUPSROIPoolGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in = ctx.Input<framework::Tensor>("X");
    auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
    auto* output_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* input_grad =
        ctx.Output<framework::Tensor>(framework::GradVarName("X"));

    auto pooled_height = ctx.Attr<int>("pooled_height");
    auto pooled_width = ctx.Attr<int>("pooled_width");
    auto output_channels = ctx.Attr<int>("output_channels");
    auto spatial_scale = ctx.Attr<float>("spatial_scale");

    if (input_grad) {
      auto in_dims = in->dims();
      int input_channels = in_dims[1];
      int height = in_dims[2];
      int width = in_dims[3];
      int rois_num = rois->dims()[0];

      // set roi batch id
      framework::Tensor rois_batch_id_list;
      rois_batch_id_list.Resize({rois_num});
      int* rois_batch_id_data =
          rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
      auto rois_lod = rois->lod().back();
      int rois_batch_size = rois_lod.size() - 1;
      // calculate batch id index for each roi according to LoD
      for (int n = 0; n < rois_batch_size; ++n) {
        for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
          rois_batch_id_data[i] = n;
        }
      }

      const T* input_rois = rois->data<T>();
      const T* output_grad_data = output_grad->data<T>();
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());

      // set gradient of X to be 0. before backpropagate.
      math::SetConstant<DeviceContext, T> set_zero;
      set_zero(ctx.template device_context<DeviceContext>(), input_grad,
               static_cast<T>(0));

      // backpropagate gradient per output pixel
      int output_grad_size = output_grad->numel();
      for (int i = 0; i < output_grad_size; ++i) {
        // The output is in order (n, c, ph, pw)
        int pw = i % pooled_width;
        int ph = (i / pooled_width) % pooled_height;
        int c = (i / pooled_width / pooled_height) % output_channels;
        int n = i / pooled_width / pooled_height / output_channels;

        // set roi_batch_id
        int roi_batch_id = rois_batch_id_data[n];
        int input_channel = (c * pooled_height + ph) * pooled_width + pw;
        int input_offset =
            (roi_batch_id * input_channels + input_channel) * height * width;
        T* offset_input_grad_data = input_grad_data + input_offset;

        // [start, end) interval for spatial sampling
        const T* offset_input_rois = input_rois + n * 4;
        T roi_start_w =
            static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
        T roi_start_h =
            static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
        T roi_end_w =
            static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
        T roi_end_h =
            static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;

        // Force too small ROIs to be 1x1
        T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1);  // avoid 0
        T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);

        // Compute w and h at input feature map
        T bin_size_h = roi_height / static_cast<T>(pooled_height);
        T bin_size_w = roi_width / static_cast<T>(pooled_width);

        int hstart = floor(bin_size_h * static_cast<T>(ph) + roi_start_h);
        int wstart = floor(bin_size_w * static_cast<T>(pw) + roi_start_w);
        int hend = ceil(bin_size_h * static_cast<T>(ph + 1) + roi_start_h);
        int wend = ceil(bin_size_w * static_cast<T>(pw + 1) + roi_start_w);

        // Add roi offsets and clip to input boundaries
        hstart = std::min(std::max(hstart, 0), height);
        hend = std::min(std::max(hend, 0), height);
        wstart = std::min(std::max(wstart, 0), width);
        wend = std::min(std::max(wend, 0), width);
        bool is_empty = (hend <= hstart) || (wend <= wstart);

        // Accumulate diff_val into input data
        T bin_area = static_cast<T>((hend - hstart) * (wend - wstart));
        T diff_val = is_empty ? 0. : output_grad_data[i] / bin_area;
        for (int ih = hstart; ih < hend; ++ih) {
          for (int iw = wstart; iw < wend; ++iw) {
            int input_index = ih * width + iw;
            offset_input_grad_data[input_index] += diff_val;
          }
        }
      }
    }
    return;
  }
};

}  // namespace operators
}  // namespace paddle