ctc_align_op.h 2.8 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string.h>
#include "paddle/framework/op_registry.h"
19 20
#include "paddle/operators/math/math_function.h"

W
wanghaoshuang 已提交
21 22 23 24 25 26 27
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
28
class CTCAlignKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
29 30 31 32 33 34
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* output = ctx.Output<LoDTensor>("Output");
    const size_t level = 0;
    auto input_lod = framework::ToAbsOffset(input->lod());
35 36

    // check input dims and lod
W
wanghaoshuang 已提交
37 38 39 40 41 42 43 44 45
    auto input_dims = input->dims();
    PADDLE_ENFORCE_EQ(input_dims[0],
                      static_cast<int64_t>(input_lod[level].back()),
                      "The first dimension of Input(Input) should be equal to "
                      "the sum of all sequences' lengths.");

    const size_t num_sequences = input_lod[level].size() - 1;
    size_t blank = static_cast<size_t>(ctx.Attr<int>("blank"));
    bool merge_repeated = ctx.Attr<bool>("merge_repeated");
46 47

    // merge repeated tokens and delete blank
W
wanghaoshuang 已提交
48 49
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    size_t output_idx = 0;
W
wanghaoshuang 已提交
50 51 52
    std::vector<size_t> output_lod0(1, 0);
    const T* input_data = input->data<T>();
    for (size_t seq_idx = 0; seq_idx < num_sequences; ++seq_idx) {
53
      T prev_token = -1;
W
wanghaoshuang 已提交
54 55
      for (size_t i = input_lod[level][seq_idx];
           i < input_lod[level][seq_idx + 1]; ++i) {
56
        if ((unsigned)input_data[i] != blank &&
57
            !(merge_repeated && input_data[i] == prev_token)) {
W
wanghaoshuang 已提交
58 59
          output_data[output_idx] = input_data[i];
          ++output_idx;
W
wanghaoshuang 已提交
60
        }
61
        prev_token = input_data[i];
W
wanghaoshuang 已提交
62
      }
W
wanghaoshuang 已提交
63
      output_lod0.push_back(output_idx);
W
wanghaoshuang 已提交
64
    }
65 66

    // set output lod
W
wanghaoshuang 已提交
67 68 69
    framework::LoD output_lod;
    output_lod.push_back(output_lod0);
    output->set_lod(output_lod);
70
    // resize output dims
W
wanghaoshuang 已提交
71
    output->Resize({static_cast<int64_t>(output_lod0.back()), 1});
72 73 74 75 76 77
    // for empty sequence
    if (output_lod0.back() == 0) {
      output->Resize({1});
      output_data = output->mutable_data<T>(ctx.GetPlace());
      output_data[0] = -1;
    }
W
wanghaoshuang 已提交
78 79 80 81 82
  }
};

}  // namespace operators
}  // namespace paddle