searchsorted_op.cc 4.4 KB
Newer Older
Y
Yanxing Shi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/op_registry.h"
Y
Yanxing Shi 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace operators {

class SearchSortedOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  static bool SearchsortedDimsMatchedBeforeLastDim(
      const framework::DDim& sequences_dims,
      const framework::DDim& values_dims) {
    if (sequences_dims.size() != values_dims.size()) {
      return false;
    }
    const auto& sequences_dims_size = sequences_dims.size();
    for (int64_t dim = 0; dim < sequences_dims_size - 1; ++dim) {
      if (sequences_dims[dim] != values_dims[dim]) {
        return false;
      }
    }
    return true;
  }

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("SortedSequence"), "Input", "SortedSequence",
                   "searchsorted");
    OP_INOUT_CHECK(ctx->HasInput("Values"), "Input", "Values", "searchsorted");

    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "searchsorted");

    auto sequences_dims = ctx->GetInputDim("SortedSequence");
    auto values_dims = ctx->GetInputDim("Values");
    auto out_int32 = ctx->Attrs().Get<bool>("out_int32");

    if (sequences_dims.size() != 1) {
      PADDLE_ENFORCE_EQ(
          SearchsortedDimsMatchedBeforeLastDim(sequences_dims, values_dims),
          true,
          platform::errors::Unavailable(
              "The dimensions of sorted_sequence tensor ( %s ) and values "
              "tensor ( %s ) can not match. Because the input sorted_sequence "
              "tensor must be 1 dimension or the first N-1 dimensions of "
              "sorted_sequence tensor and input values tensor must match. "
              "Please input appropriate sorted_sequence and values again! ",
              sequences_dims, values_dims));
    }

    if (out_int32) {
      PADDLE_ENFORCE_LT(
          sequences_dims[sequences_dims.size() - 1],
          std::numeric_limits<int>::max(),
          platform::errors::Unavailable(
              "The size of sorted_sequence %d exceed the maximum limit d%. "
              "Because the size of sorted_sequence should be less than the "
              "output maximum value for int32 bit. Please set appropriate "
              "sorted_sequence to meet this requirement! ",
              sequences_dims[sequences_dims.size() - 1],
              std::numeric_limits<int>::max()));
    }

    ctx->SetOutputDim("Out", values_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "SortedSequence");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class SearchSortedOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("SortedSequence",
             "(Tensor), N-D or 1-D tensor, The value of the tensor"
             "monotonically increases in the innermost dimension.");
    AddInput("Values", "(Tensor), N-D tensor given values.");
    AddOutput("Out", "(Tensor), The output tensor of searchsorted op.");
    AddAttr<bool>("out_int32",
                  "the output tensor is int64 type if False and on the"
                  "contrary for int32")
        .SetDefault(false);
    AddAttr<bool>(
        "right",
        "corresponding to lower bound if False and upper bound if True")
        .SetDefault(false);

    AddComment(R"DOC(
  Searchsorted Operator.

  This OP is used to find the index of the corresponding sorted_sequence in the innermost dimension based on the given values.
 
)DOC");
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(searchsorted, ops::SearchSortedOp, ops::SearchSortedOpMaker);