cross_entropy_op.h 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/math_function.h"
20
#include "paddle/fluid/platform/for_range.h"
Q
Qiao Longfei 已提交
21 22 23 24

namespace paddle {
namespace operators {

D
dongzhihong 已提交
25 26
using Tensor = framework::Tensor;

27
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
28
class CrossEntropyOpKernel : public framework::OpKernel<T> {
29
 public:
D
dongzhihong 已提交
30
  void Compute(const framework::ExecutionContext& ctx) const override {
31 32 33
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* y = ctx.Output<Tensor>("Y");
34
    y->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
35

36 37 38 39 40 41
    int rank = x->dims().size();
    Tensor x_2d = rank > 2 ? framework::ReshapeToMatrix(*x, rank - 1) : *x;
    Tensor labels_2d =
        rank > 2 ? framework::ReshapeToMatrix(*labels, rank - 1) : *labels;
    Tensor y_2d = rank > 2 ? framework::ReshapeToMatrix(*y, rank - 1) : *y;

42
    math::CrossEntropyFunctor<DeviceContext, T>()(
43
        ctx.template device_context<DeviceContext>(), &y_2d, &x_2d, &labels_2d,
Q
QI JUN 已提交
44
        ctx.Attr<bool>("soft_label"));
Y
Yan Chunwei 已提交
45 46 47
  }
};

48
template <typename T>
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class XeSoftlabelGradFunctor {
 public:
  XeSoftlabelGradFunctor(T* dx,
                         const T* dy,     // NOLINT
                         const T* x,      // NOLINT
                         const T* label,  // NOLINT
                         size_t num_classes)
      : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {}

  HOSTDEVICE void operator()(size_t i) {
    auto row_ids = i / num_classes_;
    dx_[i] = -label_[i] * dy_[row_ids] / x_[i];
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const T* label_;
  size_t num_classes_;
};

template <typename T>
class XeGradFunctor {
 public:
  XeGradFunctor(T* dx,
                const T* dy,           // NOLINT
                const T* x,            // NOLINT
                const int64_t* label,  // NOLINT
                size_t num_classes)
      : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {}

Y
Yu Yang 已提交
81 82 83 84
  HOSTDEVICE void operator()(size_t sample_id) {
    auto x_is_true_offset = sample_id * num_classes_ + label_[sample_id];
    for (size_t x_offset = sample_id * num_classes_;
         x_offset < (sample_id + 1) * num_classes_; ++x_offset) {
85 86
      dx_[x_offset] = x_offset != x_is_true_offset
                          ? static_cast<T>(0)
Y
Yu Yang 已提交
87
                          : -dy_[sample_id] / x_[x_offset];
88 89 90 91 92 93 94 95 96 97 98 99
    }
  }

 private:
  T* dx_;
  const T* dy_;
  const T* x_;
  const int64_t* label_;
  size_t num_classes_;
};

template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
100
class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
Y
Yan Chunwei 已提交
101
 public:
D
dongzhihong 已提交
102
  void Compute(const framework::ExecutionContext& ctx) const override {
103 104 105 106
    auto* x = ctx.Input<Tensor>("X");
    auto* dy = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* label = ctx.Input<Tensor>("Label");
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
107
    T* dx_data = dx->mutable_data<T>(ctx.GetPlace());
Y
Yan Chunwei 已提交
108

109 110 111 112
    // Following computation only depends on the last dimension size. So it's
    // unnecessary to convert tensors to 2-D views.
    int rank = x->dims().size();
    int64_t class_num = x->dims()[rank - 1];
113
    if (ctx.Attr<bool>("soft_label")) {
114 115 116 117 118 119 120
      XeSoftlabelGradFunctor<T> functor(dx_data, dy->data<T>(), x->data<T>(),
                                        label->data<T>(),
                                        static_cast<size_t>(class_num));
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dx->numel()));
      for_range(functor);
121
    } else {
122 123 124 125 126 127 128
      XeGradFunctor<T> functor(dx_data, dy->data<T>(), x->data<T>(),
                               label->data<int64_t>(),
                               static_cast<size_t>(class_num));
      platform::ForRange<DeviceContext> for_range(
          ctx.template device_context<DeviceContext>(),
          static_cast<size_t>(dy->numel()));
      for_range(functor);
Q
Qiao Longfei 已提交
129 130 131 132 133 134
    }
  }
};

}  // namespace operators
}  // namespace paddle