convolution_kernel.cu 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
18
#include "paddle/phi/core/visit_type.h"
19 20
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"
21
#include "paddle/phi/kernels/sparse/gpu/convolution.cu.h"
22 23 24 25

namespace phi {
namespace sparse {

26 27 28 29 30 31 32 33 34 35 36
template <typename T, typename IntT>
void Conv3dGPUKernel(const GPUContext& dev_ctx,
                     const SparseCooTensor& x,
                     const DenseTensor& kernel,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     const std::vector<int>& strides,
                     const int groups,
                     const bool subm,
                     SparseCooTensor* out,
                     DenseTensor* rulebook) {
37 38 39 40 41 42 43
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)
  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
Z
zhangkaihuo 已提交
44 45 46 47
  std::vector<int> kernel_sizes(kernel_dims.size());
  for (int i = 0; i < kernel_dims.size(); i++) {
    kernel_sizes[i] = kernel_dims[i];
  }
48
  phi::funcs::sparse::GetOutShape(
Z
zhangkaihuo 已提交
49
      x_dims, kernel_sizes, paddings, dilations, strides, &out_dims);
50 51 52 53 54 55 56 57 58 59 60 61 62
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
  std::vector<int> offsets(kernel_size + 1), h_counter(kernel_size);

  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
  DenseTensorMeta counter_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensorMeta offsets_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));
  DenseTensor offsets_per_kernel = phi::Empty(dev_ctx, std::move(offsets_meta));
Z
zhangkaihuo 已提交
63 64 65 66 67 68
  DenseTensorMeta index_meta(DataType::INT32, {1}, DataLayout::NCHW);
  DenseTensor out_index = phi::Empty(dev_ctx, std::move(index_meta));
  DenseTensor unique_value = phi::Empty(dev_ctx, std::move(index_meta));

  std::vector<int> subm_paddings(paddings), subm_strides(strides);
  if (subm) {
69 70
    phi::funcs::sparse::ResetSubmKernelSizeAndStrides(
        kernel.dims(), &subm_paddings, &subm_strides);
Z
zhangkaihuo 已提交
71
  }
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  int n = ProductRuleBook<T, GPUContext, IntT>(dev_ctx,
                                               x,
                                               kernel_sizes,
                                               subm_paddings,
                                               dilations,
                                               subm_strides,
                                               out_dims,
                                               subm,
                                               rulebook,
                                               &counter_per_kernel,
                                               &offsets_per_kernel,
                                               &out_index,
                                               &unique_value,
                                               out,
                                               &h_counter,
                                               &offsets);
88 89 90

  const int* counter_ptr = counter_per_kernel.data<int>();
  const int* offsets_ptr = counter_per_kernel.data<int>();
91
  const IntT* rulebook_ptr = rulebook->data<IntT>();
92 93 94 95 96 97 98 99 100 101 102 103

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  T* in_features_ptr = in_features.data<T>();
  T* out_features_ptr = out_features.data<T>();
104
  phi::funcs::SetConstant<GPUContext, T> set_zero;
Z
zhangkaihuo 已提交
105
  set_zero(dev_ctx, &out_features, static_cast<T>(0.0f));
106 107 108

  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, n * in_channels, 1);
109 110 111 112 113 114 115 116
  GatherKernel<T, IntT><<<config.block_per_grid.x,
                          config.thread_per_block.x,
                          0,
                          dev_ctx.stream()>>>(x.non_zero_elements().data<T>(),
                                              rulebook_ptr + n,
                                              in_features_ptr,
                                              n,
                                              in_channels);
117 118

  // 3. call gemm for every werght
119
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  auto* out_values = out->mutable_non_zero_elements();
  T* out_values_ptr = out_values->data<T>();

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
    if (h_counter[i] <= 0) {
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
    const int M = h_counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
    T* tmp_out_ptr = out_features_ptr + offsets[i] * out_channels;

    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, out->nnz() * out_channels, 1);
  ScatterKernel<T><<<config.block_per_grid.x,
                     config.thread_per_block.x,
                     0,
                     dev_ctx.stream()>>>(out_features_ptr,
                                         unique_value.data<int>(),
                                         out_index.data<int>(),
                                         out->nnz(),
                                         n,
                                         out_channels,
                                         out_values_ptr);
}
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
**/
template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
                  const SparseCooTensor& x,
                  const DenseTensor& kernel,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const int groups,
                  const bool subm,
                  SparseCooTensor* out,
                  DenseTensor* rulebook) {
179
  PD_VISIT_INTEGRAL_TYPES(
180 181 182 183 184 185 186 187 188 189 190 191 192
      x.non_zero_indices().dtype(), "Conv3dGPUKernel", ([&] {
        Conv3dGPUKernel<T, data_t>(dev_ctx,
                                   x,
                                   kernel,
                                   paddings,
                                   dilations,
                                   strides,
                                   groups,
                                   subm,
                                   out,
                                   rulebook);
      }));
}
193 194 195 196 197 198 199 200 201 202 203 204 205

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(sparse_conv3d,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}