test_rnn_decode_api.py 22.3 KB
Newer Older
G
Guo Sheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18
import numpy as np
G
Guo Sheng 已提交
19 20 21 22 23 24 25 26 27

import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core

from paddle.fluid.executor import Executor
from paddle.fluid import framework


28
class EncoderCell(layers.RNNCell):
G
Guo Sheng 已提交
29 30 31 32
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
33 34 35
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

    def call(self, step_input, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](step_input, states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_states.append(new_state)
        return step_input, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


51
class DecoderCell(layers.RNNCell):
G
Guo Sheng 已提交
52 53 54 55
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
56 57 58
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    def attention(self, hidden, encoder_output, encoder_padding_mask):
        query = layers.fc(hidden,
                          size=encoder_output.shape[-1],
                          bias_attr=False)
        attn_scores = layers.matmul(
            layers.unsqueeze(query, [1]), encoder_output, transpose_y=True)
        if encoder_padding_mask is not None:
            attn_scores = layers.elementwise_add(attn_scores,
                                                 encoder_padding_mask)
        attn_scores = layers.softmax(attn_scores)
        attn_out = layers.squeeze(
            layers.matmul(attn_scores, encoder_output), [1])
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
        return attn_out

    def call(self,
             step_input,
             states,
             encoder_output,
             encoder_padding_mask=None):
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i in range(self.num_layers):
            out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
            step_input = layers.dropout(
                out, self.dropout_prob) if self.dropout_prob > 0 else out
            new_lstm_states.append(new_lstm_state)
        out = self.attention(step_input, encoder_output, encoder_padding_mask)
        return out, [new_lstm_states, out]


93 94 95
class Encoder(object):
    def __init__(self, num_layers, hidden_size, dropout_prob=0.):
        self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
G
Guo Sheng 已提交
96

97 98 99 100 101
    def __call__(self, src_emb, src_sequence_length):
        encoder_output, encoder_final_state = layers.rnn(
            cell=self.encoder_cell,
            inputs=src_emb,
            sequence_length=src_sequence_length,
G
Guo Sheng 已提交
102
            is_reverse=False)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        return encoder_output, encoder_final_state


class Decoder(object):
    def __init__(self,
                 num_layers,
                 hidden_size,
                 dropout_prob,
                 decoding_strategy="infer_sample",
                 max_decoding_length=20):
        self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
        self.decoding_strategy = decoding_strategy
        self.max_decoding_length = None if (
            self.decoding_strategy == "train_greedy") else max_decoding_length

    def __call__(self, decoder_initial_states, encoder_output,
                 encoder_padding_mask, **kwargs):
        output_layer = kwargs.pop("output_layer", None)
        if self.decoding_strategy == "train_greedy":
            # for teach-forcing MLE pre-training
            helper = layers.TrainingHelper(**kwargs)
        elif self.decoding_strategy == "infer_sample":
            helper = layers.SampleEmbeddingHelper(**kwargs)
        elif self.decoding_strategy == "infer_greedy":
            helper = layers.GreedyEmbeddingHelper(**kwargs)

        if self.decoding_strategy == "beam_search":
            beam_size = kwargs.get("beam_size", 4)
            encoder_output = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                encoder_output, beam_size)
            encoder_padding_mask = layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                encoder_padding_mask, beam_size)
            decoder = layers.BeamSearchDecoder(
                cell=self.decoder_cell, output_fn=output_layer, **kwargs)
        else:
            decoder = layers.BasicDecoder(
                self.decoder_cell, helper, output_fn=output_layer)

        (decoder_output, decoder_final_state,
         dec_seq_lengths) = layers.dynamic_decode(
             decoder,
             inits=decoder_initial_states,
             max_step_num=self.max_decoding_length,
             encoder_output=encoder_output,
             encoder_padding_mask=encoder_padding_mask,
             impute_finished=False  # for test coverage
             if self.decoding_strategy == "beam_search" else True,
             is_test=True if self.decoding_strategy == "beam_search" else False,
             return_length=True)
        return decoder_output, decoder_final_state, dec_seq_lengths


class Seq2SeqModel(object):
    """Seq2Seq model: RNN encoder-decoder with attention"""

    def __init__(self,
                 num_layers,
                 hidden_size,
                 dropout_prob,
                 src_vocab_size,
                 trg_vocab_size,
                 start_token,
                 end_token,
                 decoding_strategy="infer_sample",
                 max_decoding_length=20,
                 beam_size=4):
        self.start_token, self.end_token = start_token, end_token
        self.max_decoding_length, self.beam_size = max_decoding_length, beam_size
        self.src_embeder = lambda x: fluid.embedding(
            input=x,
            size=[src_vocab_size, hidden_size],
            dtype="float32",
            param_attr=fluid.ParamAttr(name="source_embedding"))
        self.trg_embeder = lambda x: fluid.embedding(
            input=x,
            size=[trg_vocab_size, hidden_size],
            dtype="float32",
            param_attr=fluid.ParamAttr(name="target_embedding"))
        self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
        self.decoder = Decoder(num_layers, hidden_size, dropout_prob,
                               decoding_strategy, max_decoding_length)
        self.output_layer = lambda x: layers.fc(
            x,
            size=trg_vocab_size,
            num_flatten_dims=len(x.shape) - 1,
            param_attr=fluid.ParamAttr(name="output_w"),
            bias_attr=False)
G
Guo Sheng 已提交
190

191 192 193 194
    def __call__(self, src, src_length, trg=None, trg_length=None):
        # encoder
        encoder_output, encoder_final_state = self.encoder(
            self.src_embeder(src), src_length)
G
Guo Sheng 已提交
195 196

        decoder_initial_states = [
197 198
            encoder_final_state, self.decoder.decoder_cell.get_initial_states(
                batch_ref=encoder_output, shape=[encoder_output.shape[-1]])
G
Guo Sheng 已提交
199
        ]
200 201 202 203
        src_mask = layers.sequence_mask(
            src_length, maxlen=layers.shape(src)[1], dtype="float32")
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
G
Guo Sheng 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        # decoder
        decoder_kwargs = {
            "inputs": self.trg_embeder(trg),
            "sequence_length": trg_length,
        } if self.decoder.decoding_strategy == "train_greedy" else ({
            "embedding_fn": self.trg_embeder,
            "beam_size": self.beam_size,
            "start_token": self.start_token,
            "end_token": self.end_token
        } if self.decoder.decoding_strategy == "beam_search" else {
            "embedding_fn": self.trg_embeder,
            "start_tokens": layers.fill_constant_batch_size_like(
                input=encoder_output,
                shape=[-1],
                dtype=src.dtype,
                value=self.start_token),
            "end_token": self.end_token
        })
        decoder_kwargs["output_layer"] = self.output_layer

        (decoder_output, decoder_final_state,
         dec_seq_lengths) = self.decoder(decoder_initial_states, encoder_output,
                                         encoder_padding_mask, **decoder_kwargs)
        if self.decoder.decoding_strategy == "beam_search":  # for inference
            return decoder_output
        logits, samples, sample_length = (decoder_output.cell_outputs,
                                          decoder_output.sample_ids,
                                          dec_seq_lengths)
        probs = layers.softmax(logits)
        return probs, samples, sample_length


class PolicyGradient(object):
    """policy gradient"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, act_prob, action, reward, length=None):
        """
        update policy model self.model with policy gradient algorithm
        """
        self.reward = fluid.layers.py_func(
            func=reward_func, x=[action, length], out=reward)
        neg_log_prob = layers.cross_entropy(act_prob, action)
        cost = neg_log_prob * reward
S
ShenLiang 已提交
251
        cost = (layers.reduce_sum(cost) / layers.reduce_sum(length)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                ) if length is not None else layers.reduce_mean(cost)
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(cost)
        return cost


def reward_func(samples, sample_length):
    """toy reward"""

    def discount_reward(reward, sequence_length, discount=1.):
        return discount_reward_1d(reward, sequence_length, discount)

    def discount_reward_1d(reward, sequence_length, discount=1., dtype=None):
        if sequence_length is None:
            raise ValueError(
                'sequence_length must not be `None` for 1D reward.')
        reward = np.array(reward)
        sequence_length = np.array(sequence_length)
        batch_size = reward.shape[0]
        max_seq_length = np.max(sequence_length)
        dtype = dtype or reward.dtype
        if discount == 1.:
            dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
G
Guo Sheng 已提交
275
        else:
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
            mask = np.asarray(
                steps < (sequence_length - 1)[:, None], dtype=dtype)
            # Make each row = [discount, ..., discount, 1, ..., 1]
            dmat = mask * discount + (1 - mask)
            dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
        disc_reward = dmat * reward[:, None]
        disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
        return disc_reward

    def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
        sequence = np.array(sequence)
        sequence_length = np.array(sequence_length)
        rank = sequence.ndim
        if rank < 2:
            raise ValueError("`sequence` must be 2D or higher order.")
        batch_size = sequence.shape[0]
        max_time = sequence.shape[1]
        dtype = dtype or sequence.dtype
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        steps = np.tile(np.arange(max_time), [batch_size, 1])
        mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
        for _ in range(2, rank):
            mask = np.expand_dims(mask, -1)
        sequence = sequence * mask
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        return sequence

    samples = np.array(samples)
    sample_length = np.array(sample_length)
    # length reward
    reward = (5 - np.abs(sample_length - 5)).astype("float32")
    # repeat punishment to trapped into local minima getting all same words
    # beam search to get more than one sample may also can avoid this
    for i in range(reward.shape[0]):
        reward[i] += -10 if sample_length[i] > 1 and np.all(
            samples[i][:sample_length[i] - 1] == samples[i][0]) else 0
    return discount_reward(reward, sample_length, discount=1.).astype("float32")


class MLE(object):
    """teacher-forcing MLE training"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, probs, label, weight=None, length=None):
        loss = layers.cross_entropy(input=probs, label=label, soft_label=False)
        max_seq_len = layers.shape(probs)[1]
        mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
        loss = loss * mask
        loss = layers.reduce_mean(loss, dim=[0])
        loss = layers.reduce_sum(loss)
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(loss)
        return loss


class SeqPGAgent(object):
    def __init__(self,
                 model_cls,
                 alg_cls=PolicyGradient,
                 model_hparams={},
                 alg_hparams={},
                 executor=None,
                 main_program=None,
                 startup_program=None,
                 seed=None):
        self.main_program = fluid.Program(
        ) if main_program is None else main_program
        self.startup_program = fluid.Program(
        ) if startup_program is None else startup_program
        if seed is not None:
            self.main_program.random_seed = seed
            self.startup_program.random_seed = seed
        self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
        self.executor = executor

    def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
        with fluid.program_guard(self.main_program, self.startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64")
            # only for teacher-forcing MLE training
            target = fluid.data(name="trg", shape=[None, None], dtype="int64")
            target_length = fluid.data(
                name="trg_sequence_length", shape=[None], dtype="int64")
            label = fluid.data(
                name="label", shape=[None, None, 1], dtype="int64")
            self.model = model_cls(**model_hparams)
            self.alg = alg_cls(**alg_hparams)
            self.probs, self.samples, self.sample_length = self.model(
                source, source_length, target, target_length)
            self.samples.stop_gradient = True
372
            self.reward = fluid.data(
373
                name="reward",
374
                shape=[None, None],  # batch_size, seq_len
375
                dtype=self.probs.dtype)
376
            self.samples.stop_gradient = False
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
            self.cost = self.alg.learn(self.probs, self.samples, self.reward,
                                       self.sample_length)

        # to define the same parameters between different programs
        self.pred_program = self.main_program._prune_with_input(
            [source.name, source_length.name],
            [self.probs, self.samples, self.sample_length])

    def predict(self, feed_dict):
        samples, sample_length = self.executor.run(
            self.pred_program,
            feed=feed_dict,
            fetch_list=[self.samples, self.sample_length])
        return samples, sample_length

    def learn(self, feed_dict, fetch_list):
        results = self.executor.run(self.main_program,
                                    feed=feed_dict,
                                    fetch_list=fetch_list)
        return results


class TestDynamicDecode(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.model_hparams = {
            "num_layers": 2,
            "hidden_size": 32,
            "dropout_prob": 0.1,
            "src_vocab_size": 100,
            "trg_vocab_size": 100,
            "start_token": 0,
            "end_token": 1,
            "decoding_strategy": "infer_greedy",
            "max_decoding_length": 10
        }

        self.iter_num = iter_num = 2
        self.batch_size = batch_size = 4
        src_seq_len = 10
        trg_seq_len = 12
        self.data = {
            "src": np.random.randint(
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, src_seq_len)).astype("int64"),
            "src_sequence_length": np.random.randint(
                1, src_seq_len, (iter_num * batch_size, )).astype("int64"),
            "trg": np.random.randint(
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len)).astype("int64"),
            "trg_sequence_length": np.random.randint(
                1, trg_seq_len, (iter_num * batch_size, )).astype("int64"),
            "label": np.random.randint(
                2, self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len, 1)).astype("int64"),
        }

        place = core.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else core.CPUPlace()
        self.exe = Executor(place)

    def test_mle_train(self):
        self.model_hparams["decoding_strategy"] = "train_greedy"
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=MLE,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123)
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
                    "src": self.data["src"][iter_idx * self.batch_size:(
                        iter_idx + 1) * self.batch_size, :],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx * self.batch_size:(iter_idx + 1
                                                    ) * self.batch_size],
                    "trg": self.data["trg"][iter_idx * self.batch_size:(
                        iter_idx + 1) * self.batch_size, :],
                    "trg_sequence_length": self.data["trg_sequence_length"]
                    [iter_idx * self.batch_size:(iter_idx + 1) *
                     self.batch_size],
                    "label": self.data["label"][iter_idx * self.batch_size:(
                        iter_idx + 1) * self.batch_size]
                },
                fetch_list=[agent.cost, agent.cost])
            print("iter_idx: %d, reward: %f, cost: %f" %
                  (iter_idx, reward.mean(), cost))

    def test_greedy_train(self):
        self.model_hparams["decoding_strategy"] = "infer_greedy"
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=PolicyGradient,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123)
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
                    "src": self.data["src"][iter_idx * self.batch_size:(
                        iter_idx + 1) * self.batch_size, :],
                    "src_sequence_length": self.data["src_sequence_length"]
                    [iter_idx * self.batch_size:(iter_idx + 1) *
                     self.batch_size]
                },
                fetch_list=[agent.reward, agent.cost])
            print("iter_idx: %d, reward: %f, cost: %f" %
                  (iter_idx, reward.mean(), cost))

    def test_sample_train(self):
        self.model_hparams["decoding_strategy"] = "infer_sample"
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=PolicyGradient,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123)
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
                    "src": self.data["src"][iter_idx * self.batch_size:(
                        iter_idx + 1) * self.batch_size, :],
                    "src_sequence_length": self.data["src_sequence_length"]
                    [iter_idx * self.batch_size:(iter_idx + 1) *
                     self.batch_size]
                },
                fetch_list=[agent.reward, agent.cost])
            print("iter_idx: %d, reward: %f, cost: %f" %
                  (iter_idx, reward.mean(), cost))

    def test_beam_search_infer(self):
        self.model_hparams["decoding_strategy"] = "beam_search"
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64")
            model = Seq2SeqModel(**self.model_hparams)
            output = model(source, source_length)

        self.exe.run(startup_program)
        for iter_idx in range(self.iter_num):
            trans_ids = self.exe.run(
                program=main_program,
                feed={
                    "src": self.data["src"][iter_idx * self.batch_size:(
                        iter_idx + 1) * self.batch_size, :],
                    "src_sequence_length": self.data["src_sequence_length"]
                    [iter_idx * self.batch_size:(iter_idx + 1) *
                     self.batch_size]
                },
                fetch_list=[output])[0]
G
Guo Sheng 已提交
543 544 545 546


if __name__ == '__main__':
    unittest.main()