to_string.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
from paddle.fluid.layers import core
from paddle.fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype

20 21
__all__ = []

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

class PrintOptions(object):
    precision = 8
    threshold = 1000
    edgeitems = 3
    linewidth = 80
    sci_mode = False


DEFAULT_PRINT_OPTIONS = PrintOptions()


def set_printoptions(precision=None,
                     threshold=None,
                     edgeitems=None,
37 38
                     sci_mode=None,
                     linewidth=None):
39 40 41 42 43 44
    """Set the printing options for Tensor.
    NOTE: The function is similar with numpy.set_printoptions()

    Args:
        precision (int, optional): Number of digits of the floating number, default 8.
        threshold (int, optional): Total number of elements printed, default 1000.
45
        edgeitems (int, optional): Number of elements in summary at the begining and ending of each dimension, default 3.
46
        sci_mode (bool, optional): Format the floating number with scientific notation or not, default False.
47 48
        linewidth (int, optional): Number of characters each line, default 80.
       
49 50 51 52 53 54 55 56 57
    
    Returns:
        None.

    Examples:
        .. code-block:: python

            import paddle

C
cnn 已提交
58
            paddle.seed(10)
59 60 61 62 63
            a = paddle.rand([10, 20])
            paddle.set_printoptions(4, 100, 3)
            print(a)
            
            '''
64 65 66 67
            Tensor(shape=[10, 20], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
                   [[0.0002, 0.8503, 0.0135, ..., 0.9508, 0.2621, 0.6661],
                    [0.9710, 0.2605, 0.9950, ..., 0.4427, 0.9241, 0.9363],
                    [0.0948, 0.3226, 0.9955, ..., 0.1198, 0.0889, 0.9231],
68
                    ...,
69 70 71
                    [0.7206, 0.0941, 0.5292, ..., 0.4856, 0.1379, 0.0351],
                    [0.1745, 0.5621, 0.3602, ..., 0.2998, 0.4011, 0.1764],
                    [0.0728, 0.7786, 0.0314, ..., 0.2583, 0.1654, 0.0637]])
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            '''
    """
    kwargs = {}

    if precision is not None:
        check_type(precision, 'precision', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.precision = precision
        kwargs['precision'] = precision
    if threshold is not None:
        check_type(threshold, 'threshold', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.threshold = threshold
        kwargs['threshold'] = threshold
    if edgeitems is not None:
        check_type(edgeitems, 'edgeitems', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.edgeitems = edgeitems
        kwargs['edgeitems'] = edgeitems
88 89 90 91
    if linewidth is not None:
        check_type(linewidth, 'linewidth', (int), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.linewidth = linewidth
        kwargs['linewidth'] = linewidth
92 93 94 95 96 97 98
    if sci_mode is not None:
        check_type(sci_mode, 'sci_mode', (bool), 'set_printoptions')
        DEFAULT_PRINT_OPTIONS.sci_mode = sci_mode
        kwargs['sci_mode'] = sci_mode
    core.set_printoptions(**kwargs)


99
def _to_summary(var):
100 101
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems

102 103 104 105
    # Handle tensor of shape contains 0, like [0, 2], [3, 0, 3]
    if np.prod(var.shape) == 0:
        return np.array([])

106 107 108 109
    if len(var.shape) == 0:
        return var
    elif len(var.shape) == 1:
        if var.shape[0] > 2 * edgeitems:
zhouweiwei2014's avatar
zhouweiwei2014 已提交
110
            return np.concatenate([var[:edgeitems], var[(-1 * edgeitems):]])
111 112 113 114 115 116
        else:
            return var
    else:
        # recursively handle all dimensions
        if var.shape[0] > 2 * edgeitems:
            begin = [x for x in var[:edgeitems]]
zhouweiwei2014's avatar
zhouweiwei2014 已提交
117
            end = [x for x in var[(-1 * edgeitems):]]
118
            return np.stack([_to_summary(x) for x in (begin + end)])
119
        else:
120
            return np.stack([_to_summary(x) for x in var])
121 122


123
def _format_item(np_var, max_width=0, signed=False):
124 125 126 127 128 129 130 131 132 133 134 135 136
    if np_var.dtype == np.float32 or np_var.dtype == np.float64 or np_var.dtype == np.float16:
        if DEFAULT_PRINT_OPTIONS.sci_mode:
            item_str = '{{:.{}e}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
        elif np.ceil(np_var) == np_var:
            item_str = '{:.0f}.'.format(np_var)
        else:
            item_str = '{{:.{}f}}'.format(
                DEFAULT_PRINT_OPTIONS.precision).format(np_var)
    else:
        item_str = '{}'.format(np_var)

    if max_width > len(item_str):
137 138 139 140 141 142 143 144
        if signed:  # handle sign character for tenosr with negative item
            if np_var < 0:
                return item_str.ljust(max_width)
            else:
                return ' ' + item_str.ljust(max_width - 1)
        else:
            return item_str.ljust(max_width)
    else:  # used for _get_max_width
145 146 147 148
        return item_str


def _get_max_width(var):
149
    # return max_width for a scalar
150
    max_width = 0
151 152 153 154
    signed = False
    for item in list(var.flatten()):
        if (not signed) and (item < 0):
            signed = True
155 156 157
        item_str = _format_item(item)
        max_width = max(max_width, len(item_str))

158
    return max_width, signed
159

160

161 162 163 164 165 166 167 168 169 170 171
def _format_tensor(var, summary, indent=0, max_width=0, signed=False):
    """
    Format a tensor

    Args:
        var(Tensor): The tensor to be formatted.
        summary(bool): Do summary or not. If true, some elements will not be printed, and be replaced with "...".
        indent(int): The indent of each line.
        max_width(int): The max width of each elements in var.
        signed(bool): Print +/- or not.
    """
172
    edgeitems = DEFAULT_PRINT_OPTIONS.edgeitems
173
    linewidth = DEFAULT_PRINT_OPTIONS.linewidth
174 175

    if len(var.shape) == 0:
L
Leo Chen 已提交
176 177
        # currently, shape = [], i.e., scaler tensor is not supported.
        # If it is supported, it should be formatted like this.
178
        return _format_item(var, max_width, signed)
179
    elif len(var.shape) == 1:
180 181 182 183 184
        item_length = max_width + 2
        items_per_line = (linewidth - indent) // item_length
        items_per_line = max(1, items_per_line)

        if summary and var.shape[0] > 2 * edgeitems:
185
            items = [
186
                _format_item(item, max_width, signed)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
187
                for item in list(var)[:edgeitems]
188
            ] + ['...'] + [
189
                _format_item(item, max_width, signed)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
190
                for item in list(var)[(-1 * edgeitems):]
191 192 193
            ]
        else:
            items = [
194
                _format_item(item, max_width, signed) for item in list(var)
195
            ]
196 197 198 199 200 201
        lines = [
            items[i:i + items_per_line]
            for i in range(0, len(items), items_per_line)
        ]
        s = (',\n' + ' ' *
             (indent + 1)).join([', '.join(line) for line in lines])
202 203 204
        return '[' + s + ']'
    else:
        # recursively handle all dimensions
205
        if summary and var.shape[0] > 2 * edgeitems:
206
            vars = [
207
                _format_tensor(x, summary, indent + 1, max_width, signed)
208
                for x in var[:edgeitems]
209
            ] + ['...'] + [
210
                _format_tensor(x, summary, indent + 1, max_width, signed)
zhouweiwei2014's avatar
zhouweiwei2014 已提交
211
                for x in var[(-1 * edgeitems):]
212 213
            ]
        else:
214
            vars = [
215
                _format_tensor(x, summary, indent + 1, max_width, signed)
216 217
                for x in var
            ]
218 219 220 221 222 223 224 225

        return '[' + (',' + '\n' * (len(var.shape) - 1) + ' ' *
                      (indent + 1)).join(vars) + ']'


def to_string(var, prefix='Tensor'):
    indent = len(prefix) + 1

226 227 228 229
    dtype = convert_dtype(var.dtype)
    if var.dtype == core.VarDesc.VarType.BF16:
        dtype = 'bfloat16'

230 231 232 233 234 235
    _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})"

    tensor = var.value().get_tensor()
    if not tensor._is_initialized():
        return "Tensor(Not initialized)"

236 237
    if var.dtype == core.VarDesc.VarType.BF16:
        var = var.astype('float32')
238 239
    np_var = var.numpy()

240 241 242 243 244 245 246
    if len(var.shape) == 0:
        size = 0
    else:
        size = 1
        for dim in var.shape:
            size *= dim

247
    summary = False
248
    if size > DEFAULT_PRINT_OPTIONS.threshold:
249
        summary = True
250

251
    max_width, signed = _get_max_width(_to_summary(np_var))
252 253

    data = _format_tensor(
254
        np_var, summary, indent=indent, max_width=max_width, signed=signed)
255 256 257 258

    return _template.format(
        prefix=prefix,
        shape=var.shape,
259
        dtype=dtype,
260 261 262 263
        place=var._place_str,
        stop_gradient=var.stop_gradient,
        indent=' ' * indent,
        data=data)
264 265


266
def tensor_to_string(tensor, prefix='Tensor'):
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    indent = len(prefix) + 1

    _template = "{prefix}(shape={shape}, dtype={dtype}, place={place}, stop_gradient={stop_gradient},\n{indent}{data})"

    if not tensor._is_initialized():
        return "Tensor(Not initialized)"

    np_tensor = tensor.numpy()

    if len(tensor.shape) == 0:
        size = 0
    else:
        size = 1
        for dim in tensor.shape:
            size *= dim

    sumary = False
    if size > DEFAULT_PRINT_OPTIONS.threshold:
        sumary = True

    max_width, signed = _get_max_width(_to_summary(np_tensor))

    data = _format_tensor(
        np_tensor, sumary, indent=indent, max_width=max_width, signed=signed)

    return _template.format(
        prefix=prefix,
        shape=tensor.shape,
        dtype=tensor.dtype,
        place=tensor._place_str,
        stop_gradient=tensor.stop_gradient,
        indent=' ' * indent,
        data=data)