operator.h 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
qijun 已提交
36
#include "paddle/utils/Error.h"
Q
Qiao Longfei 已提交
37 38 39 40

namespace paddle {
namespace framework {

41
/// If a variable is a empty variable, that name will be used.
42
constexpr char kEmptyVarName[] = "@EMPTY@";
43 44 45

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
46
constexpr char kTempVarName[] = "@TEMP@";
47 48 49 50

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
51
constexpr char kGradVarSuffix[] = "@GRAD";
52 53

/// Variables with this suffix are supposed to be filled up with zeros.
54
constexpr char kZeroVarSuffix[] = "@ZERO";
55

D
dzhwinter 已提交
56
// define some kernel priority
57
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
58 59
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

60 61 62 63
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
64 65
proto::VarType::Type GetDataTypeOfVar(const Variable* var);

Q
Qiao Longfei 已提交
66
class OperatorBase;
67
class ExecutionContext;
68

Q
Qiao Longfei 已提交
69 70 71 72 73 74 75 76
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
77 78
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
79

Q
Qiao Longfei 已提交
80 81
  virtual ~OperatorBase() {}

82
  /// Executor will call this interface function to Run an op.
83 84
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
85

T
typhoonzero 已提交
86 87 88
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

89 90 91
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
92

93 94
  virtual bool SupportGPU() const { return false; }

95 96 97 98 99 100 101 102 103
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
104

Y
Yu Yang 已提交
105 106
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
107

Y
Yu Yang 已提交
108
  //! Get a input with argument's name described in `op_proto`
109
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
110
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Inputs(const std::string& name) const;
112
  //! Get all inputs variable names
Q
qijun 已提交
113 114
  std::vector<std::string> InputVars() const;

Y
Yu Yang 已提交
115
  //! Get a output with argument's name described in `op_proto`
116
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
117 118
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
119
  const std::vector<std::string>& Outputs(const std::string& name) const;
120
  //! Get all outputs variable names
Y
Yu Yang 已提交
121
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
122

Y
Yu Yang 已提交
123
  // Return a new operator instance, which is as same as this.
Y
Yu Yang 已提交
124 125
  // Use unique_ptr to prevent caller forget to delete this pointer.
  virtual std::unique_ptr<OperatorBase> Clone() const = 0;
Y
Yu Yang 已提交
126

Q
qiaolongfei 已提交
127
 protected:
Q
Qiao Longfei 已提交
128
  std::string type_;
D
dongzhihong 已提交
129
  // NOTE: in case of OpGrad, inputs_ contains:
130
  // I (Inputs)
D
dongzhihong 已提交
131 132
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
133
  VariableNameMap inputs_;
Y
Yu Yang 已提交
134

D
dongzhihong 已提交
135 136
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
137
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
138
  AttributeMap attrs_;
139 140 141 142

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
143 144
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
145 146
};

Y
Yu Yang 已提交
147 148
// Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you
149
// register it. i.e. `Clone` method is not needed to define by yourself.
150 151 152
#define DEFINE_OP_CLONE_METHOD(cls)                                            \
  std::unique_ptr<::paddle::framework::OperatorBase> Clone() const final {     \
    return std::unique_ptr<::paddle::framework::OperatorBase>(new cls(*this)); \
Y
Yu Yang 已提交
153
  }
Y
Yu Yang 已提交
154

Y
Yu Yang 已提交
155 156 157 158
// Macro for define a default constructor for Operator.
// You can also use
//   using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
Y
Yu Yang 已提交
159 160
#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls)             \
  cls(const std::string& type,                             \
Y
Yu Yang 已提交
161 162 163
      const ::paddle::framework::VariableNameMap& inputs,  \
      const ::paddle::framework::VariableNameMap& outputs, \
      const paddle::framework::AttributeMap& attrs)        \
Y
Yu Yang 已提交
164
      : parent_cls(type, inputs, outputs, attrs) {}
Y
Yu Yang 已提交
165

166 167
class NOP : public OperatorBase {
 public:
168
  using OperatorBase::OperatorBase;
169 170 171
  std::unique_ptr<OperatorBase> Clone() const override {
    return std::unique_ptr<OperatorBase>(new NOP(*this));
  }
172 173 174 175

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
176 177
};

178
class ExecutionContext {
Y
Yan Chunwei 已提交
179
 public:
180 181 182
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
183

Q
qiaolongfei 已提交
184 185 186 187
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
188
  template <typename T>
Y
Yu Yang 已提交
189 190
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
191 192
  }

Y
Yu Yang 已提交
193
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
194
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
195 196
  }

Y
Yu Yang 已提交
197
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
198
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
199 200
  }

201
  const Variable* InputVar(const std::string& name) const {
202
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
203
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
204 205
  }

206
  Variable* OutputVar(const std::string& name) const {
207
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
208
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
209 210
  }

211 212
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
213 214
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
215
    res.reserve(names.size());
216 217
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
218 219
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
220
                   });
Y
Yan Chunwei 已提交
221 222 223
    return res;
  }

224
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
225
    auto names = op_.Outputs(name);
226
    std::vector<Variable*> res;
227
    res.reserve(names.size());
228 229
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
230 231
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
232
                   });
Y
Yan Chunwei 已提交
233 234 235
    return res;
  }

236 237
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
238
    auto* var = InputVar(name);
239
    return var == nullptr ? nullptr : &var->Get<T>();
240 241 242 243
  }

  template <typename T>
  T* Output(const std::string& name) const {
244
    auto var = OutputVar(name);
245
    return var == nullptr ? nullptr : var->GetMutable<T>();
246 247 248 249 250 251 252 253
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
254
                   [&](const std::string& sub_name) {
255
                     auto var = scope_.FindVar(sub_name);
256
                     return var == nullptr ? nullptr : &var->Get<T>();
257 258 259 260 261
                   });
    return res;
  }

  template <typename T>
262
  std::vector<T*> MultiOutput(const std::string& name) const {
263
    auto names = op_.Outputs(name);
264
    std::vector<T*> res;
265 266
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
267
                   [&](const std::string& sub_name) {
268
                     auto var = scope_.FindVar(sub_name);
269
                     return var == nullptr ? nullptr : var->GetMutable<T>();
270 271 272 273
                   });
    return res;
  }

274
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
275

Q
QI JUN 已提交
276 277 278 279 280
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

281
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
282
    return device_context_;
Q
qijun 已提交
283
  }
Q
qijun 已提交
284

Q
QI JUN 已提交
285 286 287 288 289 290 291 292
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
293
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
294 295 296
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
297

D
dzhwinter 已提交
298
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
299 300 301 302
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

303
 private:
304 305
  const OperatorBase& op_;
  const Scope& scope_;
306
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
307 308
};

309 310 311 312 313 314 315 316 317 318 319 320 321 322
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
323
class OpKernelBase {
Q
qijun 已提交
324
 public:
Q
qijun 已提交
325
  /**
326
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
327 328
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
329
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
330 331
   */

332
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
333

Y
Yu Yang 已提交
334 335 336 337 338 339 340
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
341 342
};

Y
Yu Yang 已提交
343 344
class OperatorWithKernel : public OperatorBase {
 public:
Y
Yu Yang 已提交
345
  using OpKernelMap =
Y
Yu Yang 已提交
346 347
      std::unordered_map<OpKernelType, std::unique_ptr<OpKernelBase>,
                         OpKernelType::Hash>;
Q
Qiao Longfei 已提交
348

Y
Yu Yang 已提交
349 350
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
351 352
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
353 354 355 356
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
357
  }
Y
Yan Chunwei 已提交
358

359
  bool SupportGPU() const override {
Y
Yu Yang 已提交
360 361 362 363 364
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
365 366
  }

367 368 369
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
370

Q
qiaolongfei 已提交
371
 protected:
372 373 374 375
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
376 377

 private:
378
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
379
  // same.
380
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
381
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Q
Qiao Longfei 已提交
382 383
};

Y
Yu Yang 已提交
384 385
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
386 387
}  // namespace framework
}  // namespace paddle