kernel_dispatch.h 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21
#include "paddle/pten/api/include/tensor.h"
22
#include "paddle/pten/api/lib/backend_set.h"
23
#include "paddle/pten/api/lib/data_type_set.h"
24 25 26
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/common/layout.h"

Y
YuanRisheng 已提交
27
// TODO(chenweihang): split Key, Kernel, Factory into diff files
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "paddle/pten/core/kernel_factory.h"

// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace experimental {

// TODO(shixiaowei): replaced by new DeviceContext later
using CPUContext = paddle::platform::CPUDeviceContext;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
using CUDAContext = paddle::platform::CUDADeviceContext;
#endif

namespace detail {
43 44
BackendSet GetTensorBackendSet(const Tensor& t);
std::size_t CountLeadingZeros(uint64_t val);
45 46
}  // namespace detail

47 48 49
paddle::platform::DeviceContext* GetDeviceContextByBackend(
    pten::Backend backend);

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
  pten::KernelKey GetHigestPriorityKernelKey() {
    return pten::KernelKey(static_cast<Backend>(64 - detail::CountLeadingZeros(
                                                         backend_set.bitset())),
                           layout,
                           dtype);
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
92 93 94
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
95 96 97 98 99 100 101 102

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
    key_set.backend_set = key_set.backend_set | detail::GetTensorBackendSet(x);
    // TODO(chenweihang): selecte multi layout and dtype
    key_set.layout = x.layout();
    key_set.dtype = x.type();
103 104 105 106 107
    dtype_set = dtype_set | DataTypeSet(x.dtype());
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
108 109
  }

110 111 112 113 114 115 116 117
  void operator()(const std::vector<Tensor>& x) {
    key_set.backend_set =
        key_set.backend_set | detail::GetTensorBackendSet(x[0]);
    // TODO(chenweihang): selecte multi layout and dtype
    key_set.layout = x[0].layout();
    key_set.dtype = x[0].type();
  }

118 119 120 121 122 123 124 125 126 127 128 129 130 131
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

Backend ParseBackend(Backend backend);
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
  return static_cast<Backend>(64 -
                              detail::CountLeadingZeros(backend_set.bitset()));
}
Backend ParseBackendWithInputOrder(Backend backend, const Tensor& tensor);

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

152 153
}  // namespace experimental
}  // namespace paddle