pybind.cc 42.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
41
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/platform/enforce.h"
43
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
46
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
49
#include "paddle/fluid/pybind/imperative.h"
50 51
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
52
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
54

55
#include "paddle/fluid/string/to_string.h"
56

D
Dong Zhihong 已提交
57
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
58
#ifndef _WIN32
Y
Yi Wang 已提交
59
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
60
#endif
Y
Yi Wang 已提交
61 62
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
63 64
#endif

M
minqiyang 已提交
65 66
#include "pybind11/stl.h"

67 68 69 70
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
71 72 73
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

74
namespace paddle {
75
namespace pybind {
76
bool IsCompiledWithCUDA() {
77
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
78 79 80 81 82 83
  return false;
#else
  return true;
#endif
}

84 85 86 87 88 89 90 91
bool IsCompiledWithBrpc() {
#if defined(PADDLE_WITH_BRPC) || defined(PADDLE_WITH_BRPC_RDMA)
  return true;
#else
  return false;
#endif
}

Y
update  
Yancey1989 已提交
92
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
93
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
94 95 96 97 98 99
  return true;
#else
  return false;
#endif
}

100
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
101 102 103
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
104
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
105
  m.doc() = "C++ core of PaddlePaddle";
106

107 108 109 110
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

111
  BindException(&m);
Y
Yu Yang 已提交
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
      .def(py::init<>())
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
      .def("_grad", &imperative::VarBase::Grad)
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
          py::return_value_policy::reference);

  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

149 150 151
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
152
      .def("_get_dims",
153
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
154
      .def("_set_dims",
Q
qijun 已提交
155
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
156
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
157
           })
Y
yuyang18 已提交
158
      .def("_set_layout",
D
dzhwinter 已提交
159 160 161
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
162
      .def("_alloc_float",
D
dzhwinter 已提交
163
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
164
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
165
           })
Y
yuyang18 已提交
166
      .def("_alloc_float",
Y
Yu Yang 已提交
167
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
168
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
169
           })
Y
yuyang18 已提交
170
      .def("_alloc_int",
Y
Yu Yang 已提交
171
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
172
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
173
           })
Y
yuyang18 已提交
174
      .def("_alloc_int",
D
dzhwinter 已提交
175
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
176
             self.mutable_data<int>(place);
Q
qijun 已提交
177
           })
Y
yuyang18 已提交
178
      .def("_alloc_int",
C
chengduoZH 已提交
179 180 181
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
182
      .def("_alloc_float",
C
chengduoZH 已提交
183 184 185
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
186 187
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
188
      .def("set", PyCPUTensorSetFromArray<double>)
189
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
190
      .def("set", PyCPUTensorSetFromArray<bool>)
191
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
192
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
193
      .def("set", PyCPUTensorSetFromArray<int8_t>)
194
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
195 196
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
197
      .def("set", PyCUDATensorSetFromArray<double>)
198
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
199
      .def("set", PyCUDATensorSetFromArray<bool>)
200
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
201
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
202
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
203 204 205 206 207 208
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
209
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
210
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
211
#endif
212
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
213 214 215 216 217
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
218

X
Xin Pan 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
232
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
233
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
234
     columns, hence [5, 2].
X
Xin Pan 已提交
235 236 237

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
238 239
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
263 264
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
265 266 267 268 269 270 271 272 273 274 275 276 277 278
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
279
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
280 281 282 283 284
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
285
      .def("set_lod",
286
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
287
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
288
             LoD new_lod;
289 290
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
291 292
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
293
             self.set_lod(new_lod);
D
dangqingqing 已提交
294
           })
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
320
      // Set above comments of set_lod.
321 322 323 324 325 326 327 328 329 330 331 332 333
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
334 335
      });

Q
qijun 已提交
336 337 338 339 340 341 342 343 344 345 346
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
347 348
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
349 350
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
351 352 353 354 355 356 357 358 359
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
360
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
361
      .def("rows", [](SelectedRows &self) {
362 363 364 365 366
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
367
      });
Q
qijun 已提交
368

369
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
370 371 372

All parameter, weight, gradient are variables in Paddle.
)DOC")
373
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
374
      .def("set_int",
375 376
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
377 378 379 380 381 382 383
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
384
      .def("get_tensor",
385 386
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
387 388
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
389 390 391
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
392 393 394 395 396
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
397 398 399
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
400
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
401 402 403 404 405
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
406
#endif
Y
Refine  
Yu Yang 已提交
407 408 409 410 411
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
412
           py::return_value_policy::reference);
413

Y
Refine  
Yu Yang 已提交
414
  py::class_<framework::ReaderHolder>(m, "Reader", "")
415
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
416

S
sneaxiy 已提交
417 418 419 420
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
421 422
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
423
      .def("push",
S
sneaxiy 已提交
424
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
425
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
426
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
427
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
428
           })
S
sneaxiy 已提交
429 430 431 432
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
433

S
sneaxiy 已提交
434
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
435
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
436
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
437
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
438 439 440 441 442 443
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
444 445
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
446
              return holder->GetQueue();
S
sneaxiy 已提交
447
            },
S
sneaxiy 已提交
448
        py::return_value_policy::copy);
S
sneaxiy 已提交
449

Q
Qiao Longfei 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
470
      .def("var",
471
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
472
             return self.Var(name);
Y
Yu Yang 已提交
473
           },
474
           py::return_value_policy::reference)
475
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
476
      .def(py::init<>())
477
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
478
           py::return_value_policy::reference)
Y
Yu Yang 已提交
479
      .def("drop_kids", &Scope::DropKids);
480

Y
Yu Yang 已提交
481 482
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
483 484
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
485 486 487 488 489 490 491 492 493 494
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
495 496
    return ret_values;
  });
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
513
  m.def("prune", [](const ProgramDesc &origin,
514
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
515
    ProgramDesc prog_with_targets(origin);
516
    for (const auto &t : targets) {
517
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
518
    }
519
    proto::ProgramDesc pruned_desc;
520
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
521
    return new ProgramDesc(pruned_desc);
522
  });
523 524 525 526
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
527 528 529
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
530 531
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
532
  // clang-format off
Y
Yu Yang 已提交
533
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
534 535
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
536
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
537 538 539
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
540
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
541
                      -> paddle::platform::DeviceContext* {
542
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
543
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
544
#else
Q
qijun 已提交
545
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
546
#endif
C
chengduoZH 已提交
547 548 549 550 551 552 553 554 555 556 557
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
558
// clang-format on
P
peizhilin 已提交
559
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
560 561
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
562
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
563
      .def(py::init<int>())
D
dzhwinter 已提交
564
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
565

566 567 568
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
569

C
chengduoZH 已提交
570 571 572 573
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
574 575 576 577 578 579 580
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
581
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
582
             self = gpu_place;
C
chengduoZH 已提交
583 584
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
585 586
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
587
      });
Y
Yu Yang 已提交
588

Y
Yu Yang 已提交
589 590 591
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
592
                    proto::OpDesc desc;
Y
Yu Yang 已提交
593 594 595 596 597
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
598
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
599
                  })
600
      .def("run",
601
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
602 603 604
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
605
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
606 607 608 609 610
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
611 612 613 614 615 616 617
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
618 619
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
620
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
621
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
622 623 624 625
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
626

F
fengjiayi 已提交
627
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
628
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
629
      .def("close", &Executor::Close)
S
sneaxiy 已提交
630 631 632 633 634
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
635

D
dzhwinter 已提交
636
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
637
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
638 639
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
640

641
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
642
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
643
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
644 645 646 647 648 649
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
650

651
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
652
  m.def("get_fetch_variable", framework::GetFetchVariable);
653
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
654

X
Xin Pan 已提交
655 656
  m.def("_is_program_version_supported", IsProgramVersionSupported);

657 658 659 660 661
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
662

Y
Yu Yang 已提交
663 664 665 666 667 668 669 670 671
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
672
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
673 674
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
691 692 693
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
694
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
695
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
696
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
697

P
peizhilin 已提交
698
#ifndef _WIN32
D
dangqingqing 已提交
699 700 701
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
702
#endif
P
peizhilin 已提交
703
#endif
Y
Yu Yang 已提交
704

705 706 707 708
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
709
      .value("kAll", platform::ProfilerState::kAll)
710 711 712 713 714 715 716 717 718 719 720 721 722
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
723
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
724
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
725

726 727
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
728 729 730 731 732
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
733 734 735
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
736

X
fix  
Xin Pan 已提交
737 738
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
739 740 741 742 743 744 745 746 747 748 749 750 751 752
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
753
  // -- python binds for parallel executor.
Y
yuyang18 已提交
754
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
755 756 757 758
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
759 760 761 762 763 764 765 766 767 768 769
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
770 771 772

        )DOC");

Y
yuyang18 已提交
773
  exec_strategy.def(py::init())
Y
yuyang18 已提交
774 775 776 777 778
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
779 780 781 782 783 784 785 786 787 788
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
789
      .def_property(
790 791 792 793
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
794 795 796 797
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
798 799 800 801 802
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
803 804 805 806
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
807 808 809 810 811 812 813
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
814 815 816 817
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
M
minqiyang 已提交
818
                because the temp variable's shape maybe the same between two iterations. Default 1.
C
chengduo 已提交
819 820 821 822 823 824

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
825 826 827 828 829 830
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
831

Y
yuyang18 已提交
832
  exec_strategy.def_property(
Y
yuyang18 已提交
833 834 835 836 837 838 839
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
840 841
      });

C
chengduo 已提交
842 843 844 845
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
846 847 848 849 850 851 852 853 854 855 856
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
857
)DOC");
Y
yuyang18 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
874
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
875
            self.reduce_ = strategy;
C
chengduo 已提交
876 877 878 879 880 881 882
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
883 884 885 886 887
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
888
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
889
            self.gradient_scale_ = strategy;
C
chengduo 已提交
890 891 892 893 894 895
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
896 897 898 899
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
900
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
901
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
902 903 904 905
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
906 907 908
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
909
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
910
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
911 912
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
913 914 915 916 917 918
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
919
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
920 921 922 923 924 925 926 927 928
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
929
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
930 931 932
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
933 934 935 936 937 938
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
939 940 941 942 943 944 945 946 947 948 949 950
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
951 952 953 954 955 956
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
957
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
958 959 960 961 962
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
963
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
964
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
965 966 967 968 969
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
970 971 972 973

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
974
                  const std::string &, Scope *, std::vector<Scope *> &,
975 976
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
977 978 979 980
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
981 982 983 984 985
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
986 987 988 989
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
990 991 992 993 994 995
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
996

997
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
998
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
999
}
1000
}  // namespace pybind
1001
}  // namespace paddle