sendrecvop_utils.cc 4.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
typhoonzero 已提交
15
#ifdef PADDLE_WITH_CUDA
T
fix ci  
typhoonzero 已提交
16
#include <nccl.h>
T
typhoonzero 已提交
17
#endif
Y
Yi Wang 已提交
18 19
#include <thread>  // NOLINT

20
#include "paddle/fluid/framework/data_type.h"
21
#include "paddle/fluid/operators/distributed/brpc_rdma_pool.h"
22
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
23
#include "paddle/fluid/operators/distributed/variable_response.h"
P
peizhilin 已提交
24
#include "paddle/fluid/platform/port.h"
G
gongweibao 已提交
25

26 27
DEFINE_bool(rpc_disable_reuse_port, false, "Disable SO_REUSEPORT or not.");

G
gongweibao 已提交
28 29
namespace paddle {
namespace operators {
30
namespace distributed {
G
gongweibao 已提交
31

T
typhoonzero 已提交
32 33
using VarMsg = sendrecv::VariableMessage;

Y
Yu Yang 已提交
34
static TensorPayload GetCommunicationAllocationFromTensor(
Y
Yu Yang 已提交
35 36
    const platform::DeviceContext& ctx, const framework::Tensor& tensor) {
  if (is_gpu_place(ctx.GetPlace())) {
37
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
38 39 40 41 42 43 44
    PADDLE_ENFORCE(is_gpu_place(tensor.place()));
    auto& gpu_dev_ctx =
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
    platform::CUDAPinnedPlace cuda_pinned;
    auto result = memory::AllocShared(
        cuda_pinned, copy_size, memory::allocation::Allocator::kCrossDevice);
45

Y
Yu Yang 已提交
46 47
    memory::Copy(cuda_pinned, result->ptr(),
                 boost::get<platform::CUDAPlace>(tensor.place()),
Y
Yu Yang 已提交
48
                 tensor.data<void>(), copy_size, gpu_dev_ctx.stream());
Y
Yu Yang 已提交
49
    ctx.Wait();
Y
Yu Yang 已提交
50
    return TensorPayload(result);
Y
Yu Yang 已提交
51
#else
Y
Yu Yang 已提交
52
    PADDLE_THROW("This situation should not be happened");
Y
Yu Yang 已提交
53 54
#endif
  } else {
Y
Yu Yang 已提交
55
    return TensorPayload(tensor);
Y
Yu Yang 已提交
56 57
  }
}
Y
Yu Yang 已提交
58 59 60
TensorPayload GetTensorPayload(framework::Variable* var,
                               const platform::DeviceContext& ctx,
                               VarMsg* request) {
T
typhoonzero 已提交
61
  auto tensor = var->Get<framework::LoDTensor>();
T
typhoonzero 已提交
62
  // FIXME(wuyi): data types in send_recv.proto is copied from
T
typhoonzero 已提交
63
  // framework.proto
T
typhoonzero 已提交
64 65
  request->set_data_type(
      static_cast<VarMsg::Type>(framework::ToDataType(tensor.type())));
T
typhoonzero 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
  for (auto& dim : framework::vectorize(tensor.dims())) {
    request->add_dims(dim);
  }
  const framework::LoD lod = tensor.lod();
  if (lod.size() > 0) {
    request->set_lod_level(lod.size());
    for (auto& each : lod) {
      VarMsg::LodData* lod_inner = request->add_lod();
      for (auto& d : each) {
        lod_inner->add_lod_data(d);
      }
    }
  }
Y
Yu Yang 已提交
79
  return GetCommunicationAllocationFromTensor(ctx, tensor);
T
typhoonzero 已提交
80 81
}

Y
Yu Yang 已提交
82 83 84
TensorPayload GetSelectedRowsPayload(framework::Variable* var,
                                     const platform::DeviceContext& ctx,
                                     VarMsg* request) {
T
typhoonzero 已提交
85
  auto* slr = var->GetMutable<framework::SelectedRows>();
T
typhoonzero 已提交
86 87
  request->set_data_type(
      static_cast<VarMsg::Type>(framework::ToDataType(slr->value().type())));
T
typhoonzero 已提交
88 89 90 91 92 93 94 95
  request->set_lod_level(0);
  request->set_slr_height(slr->height());

  for (auto& dim : framework::vectorize(slr->value().dims())) {
    request->add_dims(dim);
  }

  auto* tensor = slr->mutable_value();
Y
Yu Yang 已提交
96
  return GetCommunicationAllocationFromTensor(ctx, *tensor);
T
typhoonzero 已提交
97 98
}

Y
Yu Yang 已提交
99 100 101 102 103 104 105 106 107 108 109
TensorPayload::TensorPayload(std::shared_ptr<memory::Allocation> allocation)
    : allocation_(allocation), offset_(0), memory_size_(allocation->size()) {}
TensorPayload::TensorPayload(const framework::Tensor& tensor)
    : allocation_(tensor.Holder()),
      offset_(tensor.offset()),
      memory_size_(tensor.numel() * framework::SizeOfType(tensor.type())) {}
void* TensorPayload::ptr() const {
  return reinterpret_cast<void*>(
      reinterpret_cast<uintptr_t>(allocation_->ptr()) + offset_);
}
size_t TensorPayload::memory_size() const { return memory_size_; }
110
}  // namespace distributed
G
gongweibao 已提交
111
}  // namespace operators
Y
Yancey 已提交
112
}  // namespace paddle