sharding_optimizer.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import unique_name, core
import paddle.fluid as fluid

from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper
from paddle.distributed.fleet.meta_optimizers.common import is_backward_op
from paddle.distributed.fleet.meta_optimizers.meta_optimizer_base import MetaOptimizerBase
from paddle.distributed.fleet.meta_optimizers.sharding.shard import Shard, ProgramSegment
from paddle.distributed.fleet.meta_optimizers.sharding.fp16_helper import FP16Utils
from paddle.distributed.fleet.meta_optimizers.sharding.weight_decay_helper import WeightDecayHelper
from paddle.distributed.fleet.meta_optimizers.sharding.gradient_clip_helper import GradientClipHelper
from paddle.distributed.fleet.meta_optimizers.sharding.prune import ProgramDeps
from paddle.distributed.fleet.meta_optimizers.sharding.utils import *

from functools import reduce

__all__ = ["ShardingOptimizer"]


class ShardingOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
        ]
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
        dist_strategy.sharding_configs = {"fuse_broadcast_MB": 32}

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        self._nrings = self.user_defined_strategy.nccl_comm_num
        self._fuse_broadcast_MB = self.user_defined_strategy.sharding_configs[
            "fuse_broadcast_MB"]

        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
        optimize_ops, params_grads = self.inner_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set)

        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

        # step1: set_up
        self._set_up(params_grads)

        # step2: split_program
        self._split_program(main_block)

        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

        # step4: insert reduce_sum for grad
        insert_scale_loss_grad_ops(
            main_block, scale=1.0 / self.role_maker._worker_num())
        main_block._sync_with_cpp()

        # step5: remove unneeded ops and vars from block
        self._prune_main_program(main_block)
        self._prune_startup_program(startup_block)

        # check op dependecy
        check_broadcast(main_block)
        check_allreduce_sum(main_block)
        self._wait()
        return optimize_ops, params_grads

    def _set_up(self, params_grads):
        # step 1: initialize nccl
        worker_idx = self.role_maker._worker_index()
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[worker_idx]
        self._collective_helper = CollectiveHelper(self.role_maker,
                                                   self._nrings)
        for ring_id in range(self._nrings):
            self._collective_helper._init_communicator(
                self._startup_program, current_endpoint, endpoints, worker_idx,
                ring_id, None)
        startup_block = self._startup_program.global_block()
        startup_block._sync_with_cpp()

        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
        self._shard.setup(params_grads, worker_idx,
                          self.role_maker._worker_num())

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
        if self.role_maker._worker_index() == 0:
            self._collective_helper._wait(current_endpoint, endpoints)

    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
            if segment._param_mem >= self._fuse_broadcast_MB:
                segment._start_idx = op_idx + 1
                self._segments.insert(0, segment)
                segment = ProgramSegment(block)
                segment._end_idx = op_idx + 1

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
                segment._param2broadcast[input_name] = broadcast_var_name
                segment._broadcast_vars.append((broadcast_var_name,
                                                self._shard.device(input_name)))
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
            if is_backward_op(op) and \
                    OP_ROLE_VAR_KEY in op.attr_names:
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) != 0:
                    assert len(op_role_var) % 2 == 0
                    for i in range(0, len(op_role_var), 2):
                        param, reduced_grad = op_role_var[i], op_role_var[i + 1]
                        segment._allreduce_vars.append(reduced_grad)
                        assert (
                            reduced_grad not in self._reduced_grads_to_param)
                        self._reduced_grads_to_param[reduced_grad] = param

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
        return

    def _prune_main_program(self, block):
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
        """
        weightdecay_helper = WeightDecayHelper()
        weightdecay_helper.prune_weight_decay(block, self._shard)
        FP16Utils.prune_fp16(block, self._shard, self._reduced_grads_to_param,
                             self._nrings)
        gradientclip_helper = GradientClipHelper()
        gradientclip_helper.prune_gradient_clip(block, self._shard)

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
            if op.type == "c_allreduce_sum":
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
            if self._shard.is_opti_var(var_name) and \
              not self._shard.has_opt_var(var_name):
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
                    "c_allreduce_sum", "c_sync_comm_stream",
                    "c_calc_comm_stream", "c_gen_nccl_id", "c_comm_init"
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
                if program_deps.should_remove_op(idx):
                    program_deps.remove_op(idx)

        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
        _add_broadcast_allreduce
        """
        ring_id = -1
        if len(self._segments) < 1:
            return

        if self._segments[-1]._allreduce_vars:
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                 self._nrings,
                                 self._segments[-1]._allreduce_vars)
            insert_allreduce_ops(block, self._segments[-1]._end_idx,
                                 self._nrings,
                                 self._segments[-1]._allreduce_vars)

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
            broadcast_vars = self._segments[idx +
                                            1]._broadcast_vars if idx < len(
                                                self._segments) - 1 else []
            fill_constant_vars = self._segments[
                idx + 2]._fill_constant_vars if idx < len(
                    self._segments) - 2 else []
            cast_ops = self._segments[idx + 2]._cast_ops if idx < len(
                self._segments) - 2 else {}

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
                        dtype=self._main_program.global_block().var(param_name)
                        .dtype,
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
            segment._end_idx += FP16Utils.remove_cast_op(block, self._params,
                                                         segment, 0)

            # step2: add Sync ops
            comm_dep_vars = allreduce_vars + [x[0] for x in broadcast_vars]
            if len(comm_dep_vars) > 0:
                insert_sync_comm_ops(
                    block,
                    segment._end_idx,
                    self._nrings,
                    comm_dep_vars, )
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

            # step3: insert `fill_constant` ops 
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

            # step4: add `cast` ops     
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
            insert_broadcast_ops(block, segment._start_idx, self._nrings,
                                 broadcast_vars)

            # step6: add all_reduce ops
            insert_allreduce_ops(block, segment._start_idx, self._nrings,
                                 allreduce_vars)

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
            insert_sync_comm_ops(
                block, self._segments[0]._start_idx, self._nrings,
                [x[0] for x in self._segments[0]._broadcast_vars])
            insert_broadcast_ops(block, self._segments[0]._start_idx,
                                 self._nrings,
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

    def _prune_startup_program(self, block):
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
                if self._shard.has_var(output_name):
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
            if self._shard.has_var(var_name):
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()