paddle_inference_api_impl.cc 10.5 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <sys/time.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "paddle/contrib/inference/paddle_inference_api_impl.h"

namespace paddle {
namespace {

// Timer for timer
class Timer {
public:
  double start;
  double startu;
  void tic() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    start = tp.tv_sec;
    startu = tp.tv_usec;
  }
  double toc() {
    struct timeval tp;
    gettimeofday(&tp, NULL);
    double used_time_ms =
        (tp.tv_sec - start) * 1000.0 + (tp.tv_usec - startu) / 1000.0;
    return used_time_ms;
  }
};

template <class T>
std::string num2str(T a) {
  std::stringstream istr;
  istr << a;
  return istr.str();
}
}  // namespace

bool PaddlePredictorImpl::Init() {
  VLOG(3) << "Predictor::init()";

  // TODO(panyx0718): Should CPU vs GPU device be decided by id?
  if (config_.device >= 0) {
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  paddle::framework::InitDevices(false);
  executor_.reset(new paddle::framework::Executor(place_));
  scope_.reset(new paddle::framework::Scope());

  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.model_dir);
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
  ctx_ = executor_->Prepare(*inference_program_, 0);

  // Create variables
  // TODO(panyx0718): Why need to test share_variables here?
  if (config_.share_variables) {
    executor_->CreateVariables(*inference_program_, scope_.get(), 0);
  }
  // Get the feed_target_names and fetch_target_names
  feed_target_names_ = inference_program_->GetFeedTargetNames();
  fetch_target_names_ = inference_program_->GetFetchTargetNames();
  return true;
}

bool PaddlePredictorImpl::Run(const std::vector<PaddleTensor> &inputs,
                              std::vector<PaddleTensor> *output_data) {
  VLOG(3) << "Predictor::predict";
  Timer timer;
  timer.tic();
  // set feed variable
  std::map<std::string, const paddle::framework::LoDTensor *> feed_targets;
  std::vector<paddle::framework::LoDTensor> feeds;
  if (!SetFeed(inputs, &feeds)) {
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
    feed_targets[feed_target_names_[i]] = &feeds[i];
  }
  // get fetch variable
  std::map<std::string, paddle::framework::LoDTensor *> fetch_targets;
  std::vector<paddle::framework::LoDTensor> fetchs;
  fetchs.resize(fetch_target_names_.size());
  for (size_t i = 0; i < fetch_target_names_.size(); ++i) {
    fetch_targets[fetch_target_names_[i]] = &fetchs[i];
  }
  // Run the inference program
  // if share variables, we need not create variables
  executor_->RunPreparedContext(ctx_.get(),
                                scope_.get(),
                                &feed_targets,
                                &fetch_targets,
                                !config_.share_variables);
  if (!GetFetch(fetchs, output_data)) {
    LOG(ERROR) << "fail to get fetchs";
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

std::unique_ptr<PaddlePredictor> PaddlePredictorImpl::Clone() {
  VLOG(3) << "Predictor::clone";
  std::unique_ptr<PaddlePredictorImpl> cls(new PaddlePredictorImpl(config_));
  if (!cls->InitShared(this)) {
    LOG(ERROR) << "fail to call InitShared";
    return nullptr;
  }
  return cls;
}

// TODO(panyx0718): Consider merge with Init()?
bool PaddlePredictorImpl::InitShared(PaddlePredictorImpl *cls) {
  VLOG(3) << "Predictor::init_shared";
  // 1. Define place, executor, scope
  if (this->config_.device >= 0) {
    place_ = paddle::platform::CUDAPlace();
  } else {
    place_ = paddle::platform::CPUPlace();
  }
  this->executor_.reset(new paddle::framework::Executor(this->place_));
  this->scope_.reset(new paddle::framework::Scope());
  // Initialize the inference program
  if (!this->config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
    this->inference_program_ = paddle::inference::Load(
        this->executor_.get(), this->scope_.get(), this->config_.model_dir);
  } else if (!this->config_.prog_file.empty() &&
             !this->config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
    this->inference_program_ =
        paddle::inference::Load(this->executor_.get(),
                                this->scope_.get(),
                                this->config_.prog_file,
                                this->config_.param_file);
  }
  this->ctx_ = this->executor_->Prepare(*this->inference_program_, 0);
  // 3. create variables
  // TODO(panyx0718): why test share_variables.
  if (config_.share_variables) {
    this->executor_->CreateVariables(
        *this->inference_program_, this->scope_.get(), 0);
  }
  // 4. Get the feed_target_names and fetch_target_names
  this->feed_target_names_ = this->inference_program_->GetFeedTargetNames();
  this->fetch_target_names_ = this->inference_program_->GetFetchTargetNames();
  return true;
}

bool PaddlePredictorImpl::SetFeed(
    const std::vector<PaddleTensor> &inputs,
    std::vector<paddle::framework::LoDTensor> *feeds) {
  VLOG(3) << "Predictor::set_feed";
  if (inputs.size() != feed_target_names_.size()) {
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
  for (size_t i = 0; i < feed_target_names_.size(); ++i) {
    paddle::framework::LoDTensor input;
    paddle::framework::DDim ddim =
        paddle::framework::make_ddim(inputs[i].shape);
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
      input_ptr =
          input.mutable_data<int64_t>(ddim, paddle::platform::CPUPlace());
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
      input_ptr = input.mutable_data<float>(ddim, paddle::platform::CPUPlace());
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
    std::memcpy(static_cast<void *>(input_ptr),
                inputs[i].data.data,
                inputs[i].data.length);
    feeds->push_back(input);
    LOG(ERROR) << "Actual feed type " << feeds->back().type().name();
  }
  return true;
}

bool PaddlePredictorImpl::GetFetch(
    const std::vector<paddle::framework::LoDTensor> &fetchs,
    std::vector<PaddleTensor> *outputs) {
  VLOG(3) << "Predictor::get_fetch";
  outputs->resize(fetchs.size());
  for (size_t i = 0; i < fetchs.size(); ++i) {
    // TODO(panyx0718): Support fetch of other types.
    if (fetchs[i].type() != typeid(float)) {
      LOG(ERROR) << "only support fetching float now.";
      return false;
    }
    std::vector<int> shape;
    auto dims_i = fetchs[i].dims();
    auto lod = fetchs[i].lod();
    const float *output_ptr = fetchs[i].data<float>();
    // const int64_t* output_ptr = fetchs[i].data<int64_t>();
    auto num = fetchs[i].numel();
    std::vector<float> data;
    if (0 == lod.size()) {
      std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
      for (int j = 0; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    } else {
      // for batch detection
      // image[0] -> output[0] shape {145, 6}
      // image[1] -> output[1] shape {176, 6}
      // then,
      // the batch output shape {321, 6}
      // the lod {{0, 145, 321}}
      // so we should append output[0] to {176, 6}
      size_t max_dim = 0;
      for (size_t j = 1; j < lod[0].size(); j++) {
        max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
      }
      size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
      if (max_dim > 0) {
        data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
      }
      for (size_t j = 1; j < lod[0].size(); j++) {
        size_t start = lod[0][j - 1] * common_dim;
        size_t end = lod[0][j] * common_dim;
        if (end > start) {
          std::copy(output_ptr + start,
                    output_ptr + end,
                    data.begin() + (j - 1) * max_dim * common_dim);
        }
      }
      shape.push_back(lod[0].size() - 1);
      shape.push_back(max_dim);
      for (int j = 1; j < dims_i.size(); ++j) {
        shape.push_back(dims_i[j]);
      }
    }

    outputs->at(i).shape = shape;
    outputs->at(i).data.length = sizeof(float) * data.size();
    outputs->at(i).data.data = malloc(outputs->at(i).data.length);
    std::memcpy(
        outputs->at(i).data.data, data.data(), outputs->at(i).data.length);
    outputs->at(i).dtype = PaddleDType::FLOAT32;
    // TODO(panyx0718): support other types? fill tensor name? avoid a copy.
  }
  return true;
}

std::unique_ptr<PaddlePredictorImpl> CreatePaddlePredictorImpl(
    const VisConfig &config) {
  VLOG(3) << "create PaddlePredictorImpl";
  // 1. GPU memeroy
  std::vector<std::string> flags;
  if (config.fraction_of_gpu_memory >= 0.0f ||
      config.fraction_of_gpu_memory <= 0.95f) {
    flags.push_back("dummpy");
    std::string flag = "--fraction_of_gpu_memory_to_use=" +
                       num2str<float>(config.fraction_of_gpu_memory);
    flags.push_back(flag);
    VLOG(3) << "set flag: " << flag;
    framework::InitGflags(flags);
  }

  std::unique_ptr<PaddlePredictorImpl> predictor(
      new PaddlePredictorImpl(config));
  if (!predictor->Init()) {
    return nullptr;
  }
  return predictor;
}

}  // namespace paddle