test.cc 38.9 KB
Newer Older
T
tensor-tang 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
T
tensor-tang 已提交
14

15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/cpu_info.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
25

26
DEFINE_double(acc, 1e-5, "Test accuracy threshold.");
27

T
tensor-tang 已提交
28
template <typename T>
29 30
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-2.f),
               const T upper = static_cast<T>(2.f)) {
T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
40
void ExpectEQ(const T* target, const T* refer, size_t n) {
T
tensor-tang 已提交
41
  if (std::is_floating_point<T>::value) {
42
    for (size_t i = 0; i < n; ++i) {
T
tensor-tang 已提交
43
      EXPECT_NEAR(target[i], refer[i], FLAGS_acc) << " at index : " << i;
T
tensor-tang 已提交
44 45
    }
  } else {
46
    for (size_t i = 0; i < n; ++i) {
T
tensor-tang 已提交
47
      EXPECT_EQ(target[i], refer[i]) << " at index : " << i;
T
tensor-tang 已提交
48 49 50 51
    }
  }
}

T
tensor-tang 已提交
52 53
std::vector<int> TestSizes() {
  std::vector<int> s;
T
tensor-tang 已提交
54
  for (int i = 1; i < 32; ++i) {
T
tensor-tang 已提交
55 56
    s.push_back(i);
  }
T
tensor-tang 已提交
57 58 59 60
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  s.push_back(2000);
T
tensor-tang 已提交
61 62 63
  return s;
}

T
tensor-tang 已提交
64
namespace jit = paddle::operators::jit;
65
using CPUPlace = paddle::platform::CPUPlace;
T
tensor-tang 已提交
66 67 68

template <typename KernelTuples, typename... Args>
struct TestFuncWithRefer {
69 70 71
  void operator()(const typename KernelTuples::func_type tgt, Args... args) {
    LOG(FATAL) << "Should specify this function.";
  }
T
tensor-tang 已提交
72 73 74 75 76 77
};

template <typename T>
struct TestFuncWithRefer<jit::XYZNTuples<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::XYZNTuples<T>::func_type tgt,
78 79
                  const std::vector<T>& x, const std::vector<T>& y,
                  const std::vector<T>& zref) {
T
tensor-tang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(zref.size(), x.size());
    EXPECT_EQ(zref.size(), y.size());
    const T* x_data = x.data();
    const T* y_data = y.data();
    const T* zref_data = zref.data();
    const int d = zref.size();

    std::vector<T> ztgt(d);
    T* ztgt_data = ztgt.data();
    // test normal
    tgt(x_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ztgt.begin());
    tgt(ztgt_data, y_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
    // test inplace y
    std::copy(y.begin(), y.end(), ztgt.begin());
    tgt(x_data, ztgt_data, ztgt_data, d);
    ExpectEQ<T>(ztgt_data, zref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::AXYNTuples<T>, T, std::vector<T>,
                         std::vector<T>> {
  void operator()(const typename jit::AXYNTuples<T>::func_type tgt, const T a,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(&a, x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(&a, ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T>
struct TestFuncWithRefer<jit::SoftmaxTuples<T>, std::vector<T>, std::vector<T>,
                         int, int> {
  void operator()(const typename jit::SoftmaxTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref, int n,
                  int bs) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    EXPECT_EQ(x.size(), static_cast<size_t>(n * bs));
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    std::vector<T> ytgt(n * bs);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, n, bs);
    ExpectEQ<T>(ytgt_data, yref_data, n * bs);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::XRNTuples<T>, std::vector<T>, T> {
  void operator()(const typename jit::XRNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const T ref_res) {
    EXPECT_TRUE(tgt != nullptr);
    T tgt_res;
    tgt(x.data(), &tgt_res, x.size());
    ExpectEQ<T>(&tgt_res, &ref_res, 1);
  }
};

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
template <typename T>
struct TestFuncWithRefer<jit::VBroadcastTuples<T>, std::vector<T>,
                         std::vector<T>, int64_t,
                         typename jit::VBroadcastTuples<T>::attr_type> {
  void operator()(const typename jit::VBroadcastTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  int64_t h,
                  const typename jit::VBroadcastTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size(), static_cast<size_t>(attr));
    EXPECT_EQ(yref.size(), x.size() * h);
    std::vector<T> y(yref.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, h, attr);
    ExpectEQ<T>(y_data, yref_data, yref.size());
  }
};

T
tensor-tang 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
template <typename T>
struct TestFuncWithRefer<jit::XYNTuples<T>, std::vector<T>, std::vector<T>> {
  void operator()(const typename jit::XYNTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(yref.size(), x.size());
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    const int d = yref.size();
    std::vector<T> ytgt(d);
    T* ytgt_data = ytgt.data();
    // test normal
    tgt(x_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
    // test inplace x
    std::copy(x.begin(), x.end(), ytgt.begin());
    tgt(ytgt_data, ytgt_data, d);
    ExpectEQ<T>(ytgt_data, yref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::LSTMTuples<T>, std::vector<T>, std::vector<T>,
203 204
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         typename jit::LSTMTuples<T>::attr_type> {
T
tensor-tang 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  void operator()(const typename jit::LSTMTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& wp,
                  const std::vector<T>& ct_1, const std::vector<T>& ct_ref,
                  const std::vector<T>& ht_ref,
                  const typename jit::LSTMTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ct_ref.size(), ht_ref.size());
    EXPECT_EQ(ct_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 4 * ht_ref.size());
    EXPECT_EQ(wp.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ct(ct_ref.size()), ht(ht_ref.size());
    std::vector<T> checked(2 * d);
    std::copy(xsrc.begin(), xsrc.end(), x.begin());

    const T* ct_1_data = ct_1.data();
    const T* wp_data = wp.data();
    const T* ct_ref_data = ct_ref.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ct_data = ct.data();
    T* ht_data = ht.data();
    T* checked_data = checked.data();

231
    jit::lstm_t step;
T
tensor-tang 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    step.gates = x_data;
    step.ct_1 = ct_1_data;
    step.ct = ct_data;
    step.ht = ht_data;
    if (attr.use_peephole) {
      step.wp = wp_data;
      step.checked = checked_data;
    }

    tgt(&step, &attr);
    ExpectEQ<T>(ct_data, ct_ref_data, d);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::GRUTuples<T>, std::vector<T>, std::vector<T>,
249 250
                         std::vector<T>,
                         typename jit::GRUTuples<T>::attr_type> {
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
  void operator()(const typename jit::GRUTuples<T>::func_type tgt,
                  const std::vector<T>& xsrc, const std::vector<T>& ht_1,
                  const std::vector<T>& ht_ref,
                  const typename jit::GRUTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(ht_1.size(), ht_ref.size());
    EXPECT_EQ(xsrc.size(), 3 * ht_ref.size());

    // x could be changed after compute, so copy to save src
    int d = ht_ref.size();
    std::vector<T> x(xsrc.size()), ht(ht_ref.size());
    std::copy(xsrc.begin(), xsrc.end(), x.begin());
    const T* ht_1_data = ht_1.data();
    const T* ht_ref_data = ht_ref.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
267
    jit::gru_t step;
T
tensor-tang 已提交
268 269 270 271 272 273 274 275
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
    tgt(&step, &attr);
    ExpectEQ<T>(ht_data, ht_ref_data, d);
  }
};

276
template <typename T>
277 278
struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
                         typename jit::SeqPoolTuples<T>::attr_type> {
279 280 281 282
  void operator()(const typename jit::SeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& x, const std::vector<T>& yref,
                  const typename jit::SeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
283
    EXPECT_EQ(x.size() % yref.size(), static_cast<size_t>(0));
284 285 286 287 288 289 290 291 292 293
    int w = yref.size();
    std::vector<T> y(w);
    const T* x_data = x.data();
    const T* yref_data = yref.data();
    T* y_data = y.data();
    tgt(x_data, y_data, &attr);
    ExpectEQ<T>(y_data, yref_data, w);
  }
};

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
template <typename T>
struct TestFuncWithRefer<jit::EmbSeqPoolTuples<T>, std::vector<T>,
                         std::vector<int64_t>, std::vector<T>,
                         typename jit::EmbSeqPoolTuples<T>::attr_type> {
  void operator()(const typename jit::EmbSeqPoolTuples<T>::func_type tgt,
                  const std::vector<T>& table, const std::vector<int64_t>& idx,
                  const std::vector<T>& oref,
                  const typename jit::EmbSeqPoolTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(table.size(),
              static_cast<size_t>(attr.table_height * attr.table_width));
    EXPECT_EQ(idx.size(),
              static_cast<size_t>(attr.index_height * attr.index_width));
    EXPECT_EQ(oref.size(),
              static_cast<size_t>(attr.table_width * attr.index_width));
    const T* table_data = table.data();
    const int64_t* idx_data = idx.data();
    const T* oref_data = oref.data();
    int o_w = oref.size();
    std::vector<T> out(o_w);
    T* o_data = out.data();
    tgt(table_data, idx_data, o_data, &attr);
    ExpectEQ<T>(o_data, oref_data, o_w);
  }
};

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
template <typename T>
struct TestFuncWithRefer<jit::SgdTuples<T>, T, std::vector<T>, std::vector<T>,
                         std::vector<int64_t>, std::vector<T>,
                         typename jit::SgdTuples<T>::attr_type> {
  void operator()(const typename jit::SgdTuples<T>::func_type tgt, const T lr,
                  const std::vector<T>& param, const std::vector<T>& grad,
                  const std::vector<int64_t>& rows, const std::vector<T>& oref,
                  const typename jit::SgdTuples<T>::attr_type& attr) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(param.size(),
              static_cast<size_t>(attr.param_height * attr.param_width));
    EXPECT_EQ(grad.size(),
              static_cast<size_t>(attr.grad_height * attr.grad_width));
    EXPECT_EQ(rows.size(), static_cast<size_t>(attr.selected_rows_size));
    EXPECT_EQ(param.size(), oref.size());
    const T* param_data = param.data();
    const T* grad_data = grad.data();
    const int64_t* rows_data = rows.data();
    const T* oref_data = oref.data();

    std::vector<T> out(oref.size());
    T* o_data = out.data();
    tgt(&lr, param_data, grad_data, rows_data, o_data, &attr);
    // only the selected rows should be equal
    for (size_t i = 0; i < rows.size(); ++i) {
      ExpectEQ<T>(o_data + rows[i] * attr.grad_width,
                  oref_data + rows[i] * attr.grad_width, attr.grad_width);
    }

    // inplace
    std::copy(param.begin(), param.end(), out.begin());
    tgt(&lr, o_data, grad_data, rows_data, o_data, &attr);
    for (size_t i = 0; i < rows.size(); ++i) {
      ExpectEQ<T>(o_data + rows[i] * attr.grad_width,
                  oref_data + rows[i] * attr.grad_width, attr.grad_width);
    }
  }
};

T
tensor-tang 已提交
359
template <typename T>
360
struct TestFuncWithRefer<jit::MatMulTuples<T>, std::vector<T>, std::vector<T>,
361 362
                         std::vector<T>,
                         typename jit::MatMulTuples<T>::attr_type> {
T
tensor-tang 已提交
363 364
  void operator()(const typename jit::MatMulTuples<T>::func_type tgt,
                  const std::vector<T>& a, const std::vector<T>& b,
365 366
                  const std::vector<T>& cref,
                  const typename jit::MatMulTuples<T>::attr_type& attr) {
T
tensor-tang 已提交
367
    EXPECT_TRUE(tgt != nullptr);
368 369 370
    EXPECT_EQ(a.size(), static_cast<size_t>(attr.m * attr.k));
    EXPECT_EQ(b.size(), static_cast<size_t>(attr.k * attr.n));
    EXPECT_EQ(cref.size(), static_cast<size_t>(attr.m * attr.n));
T
tensor-tang 已提交
371 372 373 374 375
    std::vector<T> c(cref.size());
    const T* a_data = a.data();
    const T* b_data = b.data();
    const T* cref_data = cref.data();
    T* c_data = c.data();
376 377
    tgt(a_data, b_data, c_data, &attr);
    ExpectEQ<T>(c_data, cref_data, attr.m * attr.n);
T
tensor-tang 已提交
378 379 380
  }
};

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
template <typename T>
struct TestFuncWithRefer<jit::LayerNormTuples<T>, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>, std::vector<T>, int, float, int> {
  void operator()(const typename jit::LayerNormTuples<T>::func_type tgt,
                  std::vector<T>& x, std::vector<T>& outref,  // NOLINT
                  std::vector<T>& mean, std::vector<T>& var,  // NOLINT
                  const std::vector<T>& scale, const std::vector<T>& bias,
                  int left, const float epsilon, int right) {
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size(), static_cast<size_t>(left * right));
    EXPECT_EQ(outref.size(), static_cast<size_t>(left * right));
    EXPECT_EQ(mean.size(), static_cast<size_t>(left));
    EXPECT_EQ(var.size(), static_cast<size_t>(left));
    EXPECT_EQ(scale.size(), static_cast<size_t>(right));
    EXPECT_EQ(bias.size(), static_cast<size_t>(right));
    std::vector<T> outtgt(outref.size());
    const T* scale_data = scale.data();
    const T* bias_data = bias.data();
    T* x_data = x.data();
    T* mean_data = mean.data();
    T* var_data = var.data();
    T* outref_data = outref.data();
    T* outtgt_data = outtgt.data();

    tgt(x_data, outtgt_data, mean_data, var_data, scale_data, bias_data, left,
        epsilon, right);
    ExpectEQ<T>(outtgt_data, outref_data, left * right);
  }
};

template <typename T>
struct TestFuncWithRefer<jit::CRFDecodingTuples<T>, int, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<int>,
                         int> {
  void operator()(const typename jit::CRFDecodingTuples<T>::func_type tgt,
                  const int seq_len, const std::vector<T>& x,
                  const std::vector<T>& w, std::vector<T>& alpharef,  // NOLINT
                  std::vector<int>& trackref, int tag_num) {          // NOLINT
    constexpr int state_trans_base_idx = 2;
    EXPECT_TRUE(tgt != nullptr);
    EXPECT_EQ(x.size(), static_cast<size_t>(seq_len * tag_num));
    EXPECT_EQ(w.size(),
              static_cast<size_t>((tag_num + state_trans_base_idx) * tag_num));
    EXPECT_EQ(alpharef.size(), static_cast<size_t>(seq_len * tag_num));
    EXPECT_EQ(trackref.size(), static_cast<size_t>(seq_len * tag_num));
    std::vector<T> alphatgt(alpharef.size());
    std::vector<int> tracktgt(trackref.size());

    memcpy(trackref.data(), tracktgt.data(), tag_num * sizeof(int));
    tgt(seq_len, (const T*)x.data(), (const T*)w.data(), alphatgt.data(),
        tracktgt.data(), tag_num);
    ExpectEQ<T>(alpharef.data(), alphatgt.data(), seq_len * tag_num);
    ExpectEQ<int>(trackref.data(), tracktgt.data(), seq_len * tag_num);
  }
};

438 439
template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
T
tensor-tang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
void TestAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  TestFuncWithRefer<KernelTuples, Args...> test;
  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    VLOG(10) << "Test Jitcode Kernel ";
    test(jitcode, args...);
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
455
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
456 457
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
458
        VLOG(10) << "Test More Kernel : " << i->ImplType();
T
tensor-tang 已提交
459 460 461 462 463
        test(more, args...);
      }
    }
  }
  // test result from Get function
T
tensor-tang 已提交
464
  // VLOG(10) << "Test Get function ";
465
  auto tgt = jit::KernelFuncs<KT, KernelTuples, PlaceType>::Cache().At(attr);
T
tensor-tang 已提交
466
  test(tgt, args...);
T
tensor-tang 已提交
467 468
}

469
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
470
void TestKernelXYZNTuples() {
471
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
T
tensor-tang 已提交
472
  for (int d : TestSizes()) {
473
    auto ref = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
474 475
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
476
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
477 478 479
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
480 481 482 483 484 485 486 487 488 489 490
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
491
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
492 493 494 495 496
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

T
tensor-tang 已提交
497 498
    TestAllImpls<KT, jit::XYZNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>, std::vector<T>>(d, x, y, zref);
T
tensor-tang 已提交
499 500
  }
}
T
tensor-tang 已提交
501

502
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
503
void TestKernelAXYNTuples() {
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::AXYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    const T a = static_cast<T>(3);
    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
    RandomVec<T>(d, x.data());
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(&a, x_data, yref_data, d);
    ref(&a, xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
523 524
    TestAllImpls<KT, jit::AXYNTuples<T>, PlaceType, T, std::vector<T>,
                 std::vector<T>>(d, a, x, yref);
525 526 527
  }
}

528
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
529
void TestKernelXRNTuples() {
530
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
531 532
  auto last_acc = FLAGS_acc;
  FLAGS_acc = 1e-4;
533 534 535 536
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XRNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);
    std::vector<T> x(d);
537
    RandomVec<T>(d, x.data());
538 539 540 541 542
    T ref_res;
    ref(x.data(), &ref_res, d);
    TestAllImpls<KT, jit::XRNTuples<T>, PlaceType, std::vector<T>, T>(d, x,
                                                                      ref_res);
  }
543
  FLAGS_acc = last_acc;
544 545 546
}

template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
547
void TestKernelXYNTuples() {
548 549 550 551 552 553 554
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, jit::XYNTuples<T>>();
    EXPECT_TRUE(ref != nullptr);

    std::vector<T> x(d), yref(d);
    std::vector<T> xinp(d);  // inplace test
555
    RandomVec<T>(d, x.data());
556 557 558 559 560 561 562 563 564 565
    std::copy(x.begin(), x.end(), xinp.begin());

    const T* x_data = x.data();
    T* yref_data = yref.data();
    T* xinp_data = xinp.data();
    // test refer code inplace
    ref(x_data, yref_data, d);
    ref(xinp_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, yref_data, d);

T
tensor-tang 已提交
566 567
    TestAllImpls<KT, jit::XYNTuples<T>, PlaceType, std::vector<T>,
                 std::vector<T>>(d, x, yref);
568 569 570
  }
}

571
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
572
void TestKernelLSTMTuples() {
T
tensor-tang 已提交
573 574
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
T
tensor-tang 已提交
575 576 577
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int d : test_sizes) {
T
tensor-tang 已提交
578 579 580 581 582 583 584 585 586 587 588
    for (bool use_peephole : {true, false}) {
      for (auto& act_gate : all_acts) {
        for (auto& act_cand : all_acts) {
          for (auto& act_cell : all_acts) {
            const jit::lstm_attr_t attr(
                d, jit::to_kerneltype(act_gate), jit::to_kerneltype(act_cand),
                jit::to_kerneltype(act_cell), use_peephole);
            auto ref = jit::GetRefer<KT, jit::LSTMTuples<T>>();
            EXPECT_TRUE(ref != nullptr);
            std::vector<T> xsrc(4 * d), wp(3 * d), ct_1(d);
            std::vector<T> ct_ref(d), ht_ref(d), checked(2 * d);
589
            RandomVec<T>(4 * d, xsrc.data());
590 591
            RandomVec<T>(3 * d, wp.data(), -1.f, 1.f);
            RandomVec<T>(d, ct_1.data(), -1.f, 1.f);
T
tensor-tang 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
            // x could be changed after compute, so copy to save src
            std::vector<T> x(xsrc.size());
            std::copy(xsrc.begin(), xsrc.end(), x.begin());
            const T* ct_1_data = ct_1.data();
            const T* wp_data = wp.data();
            T* x_data = x.data();
            T* checked_data = checked.data();
            T* ct_ref_data = ct_ref.data();
            T* ht_ref_data = ht_ref.data();
            jit::lstm_t step;
            step.gates = x_data;
            step.ct_1 = ct_1_data;
            step.ct = ct_ref_data;
            step.ht = ht_ref_data;
            if (use_peephole) {
              step.wp = wp_data;
              step.checked = checked_data;
            }
            ref(&step, &attr);
T
tensor-tang 已提交
611
            VLOG(10) << attr;
T
tensor-tang 已提交
612 613 614 615
            TestAllImpls<KT, jit::LSTMTuples<T>, PlaceType, std::vector<T>,
                         std::vector<T>, std::vector<T>, std::vector<T>,
                         std::vector<T>>(attr, xsrc, wp, ct_1, ct_ref, ht_ref,
                                         attr);
T
tensor-tang 已提交
616 617 618 619 620 621 622
          }
        }
      }
    }
  }
}

623
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
624
void TestKernelGRUTuples() {
625 626
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  std::vector<std::string> all_acts = {"sigmoid", "tanh", "relu", "identity"};
T
tensor-tang 已提交
627 628 629
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int d : test_sizes) {
630 631 632 633 634 635 636
    for (auto& act_gate : all_acts) {
      for (auto& act_cand : all_acts) {
        const jit::gru_attr_t attr(d, jit::to_kerneltype(act_gate),
                                   jit::to_kerneltype(act_cand));
        auto ref = jit::GetRefer<KT, jit::GRUTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> xsrc(3 * d), ht_1(d), ht_ref(d);
637 638
        RandomVec<T>(3 * d, xsrc.data());
        RandomVec<T>(d, ht_1.data());
639 640 641 642 643 644 645 646 647 648 649
        // x could be changed after compute, so copy to save src
        std::vector<T> x(xsrc.size());
        std::copy(xsrc.begin(), xsrc.end(), x.begin());
        const T* ht_1_data = ht_1.data();
        T* x_data = x.data();
        T* ht_ref_data = ht_ref.data();
        jit::gru_t step;
        step.gates = x_data;
        step.ht_1 = ht_1_data;
        step.ht = ht_ref_data;
        ref(&step, &attr);
T
tensor-tang 已提交
650
        VLOG(10) << attr;
T
tensor-tang 已提交
651 652 653
        TestAllImpls<KT, jit::GRUTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>>(attr, xsrc, ht_1, ht_ref,
                                                     attr);
654 655 656 657 658
      }
    }
  }
}

659
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
660
void TestKernelSeqPoolTuples() {
661
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
662 663
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
T
tensor-tang 已提交
664 665
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
666
  for (auto type : pool_types) {
T
tensor-tang 已提交
667
    for (int w : test_sizes) {
T
tensor-tang 已提交
668
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
669
      for (int h : test_sizes) {
T
tensor-tang 已提交
670
        attr.h = h;
671 672 673
        auto ref = jit::GetRefer<KT, jit::SeqPoolTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> x(h * w), yref(w);
674
        RandomVec<T>(h * w, x.data());
675 676 677 678 679 680 681 682 683 684 685
        const T* x_data = x.data();
        T* yref_data = yref.data();
        ref(x_data, yref_data, &attr);
        VLOG(10) << attr;
        TestAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>>(attr, x, yref, attr);
      }
    }
  }
}

686
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
687
void TestKernelMatMulTuples() {
T
tensor-tang 已提交
688
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
689
  auto last_acc = FLAGS_acc;
T
tensor-tang 已提交
690 691
  // export MKL_CBWR=AVX would make MKL force to use AVX
  // export KMP_DETERMINISTIC_REDUCTION=yes would make the result deterministic
692
  FLAGS_acc = 1e-3;
T
tensor-tang 已提交
693 694 695 696 697 698
  for (int m : {1, 2, 3, 4}) {
    for (int n : {1, 2, 3, 4}) {
      for (int k : TestSizes()) {
        auto ref = jit::GetRefer<KT, jit::MatMulTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        std::vector<T> a(m * k), b(k * n), c(m * n);
699 700
        RandomVec<T>(m * k, a.data());
        RandomVec<T>(k * n, b.data());
T
tensor-tang 已提交
701 702 703
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
704 705
        const jit::matmul_attr_t attr{m, n, k};
        ref(a_data, b_data, c_data, &attr);
T
tensor-tang 已提交
706
        TestAllImpls<KT, jit::MatMulTuples<T>, PlaceType, std::vector<T>,
707
                     std::vector<T>, std::vector<T>>(attr, a, b, c, attr);
T
tensor-tang 已提交
708 709 710
      }
    }
  }
711
  FLAGS_acc = last_acc;
T
tensor-tang 已提交
712 713
}

714
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
715
void TestKernelSoftmaxTuples() {
716 717 718 719 720 721
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      auto ref = jit::GetRefer<KT, jit::SoftmaxTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> x(bs * n), y(bs * n);
722
      RandomVec<T>(bs * n, x.data());
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
      const T* x_data = x.data();
      T* y_data = y.data();

      std::vector<T> xinp(x.size());  // inplace test
      std::copy(x.begin(), x.end(), xinp.begin());
      ref(x_data, y_data, n, bs);
      T* xinp_data = xinp.data();
      ref(xinp_data, xinp_data, n, bs);
      ExpectEQ<T>(xinp_data, y_data, n * bs);

      TestAllImpls<KT, jit::SoftmaxTuples<T>, PlaceType, std::vector<T>,
                   std::vector<T>>(n, x, y, n, bs);
    }
  }
}

739
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
740
void TestKernelEmbSeqPoolTuples() {
741 742 743 744
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  int64_t tbl_h = 1e4;
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum};  // only support sum yet
T
tensor-tang 已提交
745 746 747
  auto test_sizes = TestSizes();
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 1000));
  for (int tbl_w : test_sizes) {
748
    std::vector<T> table(tbl_h * tbl_w);
749
    RandomVec<T>(tbl_h * tbl_w, table.data());
750 751 752
    const T* table_data = table.data();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
753
        for (int idx_h : {1, 2, 9, 13, 16}) {
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
          auto ref = jit::GetRefer<KT, jit::EmbSeqPoolTuples<T>>();
          EXPECT_TRUE(ref != nullptr);
          std::vector<int64_t> idx(idx_h * idx_w);
          RandomVec<int64_t>(idx_h * idx_w, idx.data(), 0, tbl_h - 1);
          int64_t out_w = tbl_w * idx_w;
          std::vector<T> oref(out_w);
          const int64_t* idx_data = idx.data();
          T* o_data = oref.data();
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          ref(table_data, idx_data, o_data, &attr);

          TestAllImpls<KT, jit::EmbSeqPoolTuples<T>, PlaceType, std::vector<T>,
                       std::vector<int64_t>, std::vector<T>>(attr, table, idx,
                                                             oref, attr);
        }
      }
    }
  }
}

775
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
776
void TestKernelSgdTuples() {
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
    PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
    PADDLE_ENFORCE_GT(n, 0);
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 10}) {
    for (int grad_w : TestSizes()) {
      std::vector<T> param(param_h * grad_w);
      std::vector<T> param_out(param_h * grad_w);
795
      RandomVec<T>(param_h * grad_w, param.data());
796 797 798 799 800 801
      const T* param_data = param.data();
      T* out_data = param_out.data();
      for (int rows_size = 1; rows_size <= param_h; ++rows_size) {
        std::vector<T> grad(rows_size * grad_w);
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
802
        RandomVec<T>(rows_size * grad_w, grad.data());
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        const int64_t* rows_data = rows.data();
        const T* grad_data = grad.data();
        auto ref = jit::GetRefer<KT, jit::SgdTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
        ref(&lr, param_data, grad_data, rows_data, out_data, &attr);

        // inplace test
        std::vector<T> inp(param.size());
        std::copy(param.begin(), param.end(), inp.begin());
        T* inp_data = inp.data();
        ref(&lr, inp_data, grad_data, rows_data, inp_data, &attr);
        // only the selected rows should be equal
        for (int i = 0; i < rows_size; ++i) {
          ExpectEQ<T>(inp_data + rows[i] * grad_w, out_data + rows[i] * grad_w,
                      grad_w);
        }

        TestAllImpls<KT, jit::SgdTuples<T>, PlaceType, T, std::vector<T>,
                     std::vector<T>, std::vector<int64_t>, std::vector<T>>(
            attr, lr, param, grad, rows, param_out, attr);
      }
    }
  }
}

829
template <jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
830
void TestKernelNCHW16CMulNCTuples() {
T
tensor-tang 已提交
831 832 833 834 835 836 837
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const int n = 3, c = 16 * 4, h = 10, w = 10;
  auto ref = jit::GetRefer<KT, jit::NCHW16CMulNCTuples<T>>();
  EXPECT_TRUE(ref != nullptr);
  int sz = n * c * h * w;
  std::vector<T> x(sz), y(n * c), zref(sz);
  std::vector<T> ztgt(sz), zjit(sz);
838 839
  RandomVec<T>(sz, x.data());
  RandomVec<T>(n * c, y.data());
T
tensor-tang 已提交
840 841 842 843 844 845 846 847

  const T* x_data = x.data();
  const T* y_data = y.data();
  T* zref_data = zref.data();
  T* ztgt_data = ztgt.data();
  T* zjit_data = zjit.data();
  constexpr int simd_width = ZMM_FLOAT_BLOCK;
  int C = c / simd_width;
848 849 850
  auto tgt =
      jit::KernelFuncs<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>::Cache().At(
          0);
T
tensor-tang 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
  auto jitcode = jit::GetJitCode<KT, jit::NCHW16CMulNCTuples<T>, PlaceType>(0);
  EXPECT_TRUE(tgt != nullptr);

  if (std::is_same<T, float>::value &&
      paddle::platform::MayIUse(paddle::platform::avx512f)) {
    EXPECT_TRUE(jitcode != nullptr);
  }
  for (int ni = 0; ni < n; ni++) {
    for (int ci = 0; ci < C; ci++) {
      auto ptr_x =
          x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
      auto ptr_zref =
          zref_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
      auto ptr_ztgt =
          ztgt_data + ni * C * h * w * simd_width + ci * h * w * simd_width;

      ref(ptr_x, ptr_y, ptr_zref, h, w);
      tgt(ptr_x, ptr_y, ptr_ztgt, h, w);

      if (jitcode) {
        auto ptr_zjit =
            zjit_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
        jitcode(ptr_x, ptr_y, ptr_zjit, h, w);
      }
    }
  }
  ExpectEQ<T>(ztgt_data, zref_data, sz);
  if (jitcode) {
    ExpectEQ<T>(zjit_data, zref_data, sz);
  }
}

884
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
885
void TestKernelLayerNormTuples() {
886 887 888 889 890 891 892 893 894 895 896 897
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        auto ref = jit::GetRefer<KT, jit::LayerNormTuples<T>>();
        EXPECT_TRUE(ref != nullptr);
        int sz = left * right;
        std::vector<T> x(sz), mean(left), var(left), scale(right), bias(right),
            outref(sz);
898 899 900 901 902
        RandomVec<T>(sz, x.data());
        RandomVec<T>(left, mean.data());
        RandomVec<T>(left, var.data());
        RandomVec<T>(right, scale.data());
        RandomVec<T>(right, bias.data());
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

        const T* scale_data = scale.data();
        const T* bias_data = bias.data();
        T* x_data = x.data();
        T* mean_data = mean.data();
        T* var_data = var.data();
        T* outref_data = outref.data();

        ref(x_data, outref_data, mean_data, var_data, scale_data, bias_data,
            left, epsilon, right);

        TestAllImpls<KT, jit::LayerNormTuples<T>, PlaceType, std::vector<T>,
                     std::vector<T>, std::vector<T>, std::vector<T>,
                     std::vector<T>, std::vector<T>, int, float>(
            right, x, outref, mean, var, scale, bias, left, epsilon, right);
      }
    }
  }
}

template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
T
tensor-tang 已提交
924
void TestKernelCRFDecodingTuples() {
925 926
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  constexpr int state_trans_base_idx = 2;
T
tensor-tang 已提交
927
  auto test_sizes = TestSizes();
928
  test_sizes.erase(std::remove(test_sizes.begin(), test_sizes.end(), 2000));
929
  for (int seq_len : {1, 11, 17, 50}) {
T
tensor-tang 已提交
930
    for (int tag_num : test_sizes) {
931 932 933 934 935 936
      auto ref = jit::GetRefer<KT, jit::CRFDecodingTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      std::vector<T> x(x_sz), w(w_sz), alpharef(x_sz);
      std::vector<int> trackref(x_sz);
937 938
      RandomVec<T>(x_sz, x.data());
      RandomVec<T>(w_sz, w.data());
939 940 941 942 943 944 945 946 947 948 949 950

      ref(seq_len, (const T*)x.data(), (const T*)w.data(), alpharef.data(),
          trackref.data(), tag_num);

      TestAllImpls<KT, jit::CRFDecodingTuples<T>, PlaceType, int,
                   std::vector<T>, std::vector<T>, std::vector<T>,
                   std::vector<int>, int>(tag_num, seq_len, x, w, alpharef,
                                          trackref, tag_num);
    }
  }
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
template <jit::KernelType KT, typename T, typename PlaceType>
void TestKernelVBroadcastTuples() {
  VLOG(10) << "===== Test JITKernel " << jit::to_string(KT);
  for (int w : TestSizes()) {
    std::vector<T> x(w);
    RandomVec<T>(w, x.data());
    const T* x_data = x.data();
    for (int64_t h : {1, 2, 6}) {
      auto ref = jit::GetRefer<KT, jit::VBroadcastTuples<T>>();
      EXPECT_TRUE(ref != nullptr);
      std::vector<T> y(w * h);
      T* y_data = y.data();
      ref(x_data, y_data, h, w);

      TestAllImpls<KT, jit::VBroadcastTuples<T>, PlaceType, std::vector<T>,
                   std::vector<T>, int64_t>(static_cast<int64_t>(w), x, y, h,
                                            static_cast<int64_t>(w));
    }
  }
}

972 973 974 975
#define TEST_CPU_KERNEL(test_tuple, kernel_type)                  \
  TEST(JITKernel, kernel_type) {                                  \
    TestKernel##test_tuple<jit::kernel_type, float, CPUPlace>();  \
    TestKernel##test_tuple<jit::kernel_type, double, CPUPlace>(); \
T
tensor-tang 已提交
976
  }
T
tensor-tang 已提交
977

T
tensor-tang 已提交
978 979 980 981
TEST_CPU_KERNEL(XYZNTuples, kVMul);
TEST_CPU_KERNEL(XYZNTuples, kVAdd);
TEST_CPU_KERNEL(XYZNTuples, kVAddRelu);
TEST_CPU_KERNEL(XYZNTuples, kVSub);
T
tensor-tang 已提交
982

T
tensor-tang 已提交
983 984
TEST_CPU_KERNEL(AXYNTuples, kVScal);
TEST_CPU_KERNEL(AXYNTuples, kVAddBias);
T
tensor-tang 已提交
985

T
tensor-tang 已提交
986 987
TEST_CPU_KERNEL(XRNTuples, kHMax);
TEST_CPU_KERNEL(XRNTuples, kHSum);
T
tensor-tang 已提交
988

T
tensor-tang 已提交
989 990 991 992 993 994
TEST_CPU_KERNEL(XYNTuples, kVRelu);
TEST_CPU_KERNEL(XYNTuples, kVIdentity);
TEST_CPU_KERNEL(XYNTuples, kVSquare);
TEST_CPU_KERNEL(XYNTuples, kVExp);
TEST_CPU_KERNEL(XYNTuples, kVSigmoid);
TEST_CPU_KERNEL(XYNTuples, kVTanh);
995
TEST_CPU_KERNEL(XYNTuples, kVCopy);
T
tensor-tang 已提交
996

T
tensor-tang 已提交
997 998
TEST_CPU_KERNEL(LSTMTuples, kLSTMCtHt);
TEST_CPU_KERNEL(LSTMTuples, kLSTMC1H1);
T
tensor-tang 已提交
999

T
tensor-tang 已提交
1000 1001 1002
TEST_CPU_KERNEL(GRUTuples, kGRUH1);
TEST_CPU_KERNEL(GRUTuples, kGRUHtPart1);
TEST_CPU_KERNEL(GRUTuples, kGRUHtPart2);
1003

T
tensor-tang 已提交
1004
TEST_CPU_KERNEL(NCHW16CMulNCTuples, kNCHW16CMulNC);
1005

T
tensor-tang 已提交
1006 1007 1008 1009 1010 1011 1012
TEST_CPU_KERNEL(SeqPoolTuples, kSeqPool);
TEST_CPU_KERNEL(MatMulTuples, kMatMul);
TEST_CPU_KERNEL(SoftmaxTuples, kSoftmax);
TEST_CPU_KERNEL(EmbSeqPoolTuples, kEmbSeqPool);
TEST_CPU_KERNEL(SgdTuples, kSgd);
TEST_CPU_KERNEL(LayerNormTuples, kLayerNorm);
TEST_CPU_KERNEL(CRFDecodingTuples, kCRFDecoding);
1013
TEST_CPU_KERNEL(VBroadcastTuples, kVBroadcast);
1014

T
tensor-tang 已提交
1015 1016 1017 1018 1019
TEST(JITKernel_key, lstm) {
  jit::lstm_attr_t attr1(8, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr2(9, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr3(9, jit::kVIdentity, jit::kVSigmoid, jit::kVTanh);
  jit::lstm_attr_t attr4(9, jit::kVRelu, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
1020

T
tensor-tang 已提交
1021 1022 1023 1024
  auto key1 = jit::JitCodeKey<jit::lstm_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::lstm_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::lstm_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::lstm_attr_t>(attr4);
1025

T
tensor-tang 已提交
1026 1027 1028
  EXPECT_TRUE(key1 != key2);
  EXPECT_TRUE(key2 == key3);
  EXPECT_TRUE(key3 != key4);
1029 1030
}

T
tensor-tang 已提交
1031 1032 1033 1034 1035
TEST(JITKernel_key, gru) {
  jit::gru_attr_t attr1(8, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr2(9, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr3(9, jit::kVSigmoid, jit::kVTanh);
  jit::gru_attr_t attr4(9, jit::kVSigmoid, jit::kVIdentity);
T
tensor-tang 已提交
1036

T
tensor-tang 已提交
1037 1038 1039 1040
  auto key1 = jit::JitCodeKey<jit::gru_attr_t>(attr1);
  auto key2 = jit::JitCodeKey<jit::gru_attr_t>(attr2);
  auto key3 = jit::JitCodeKey<jit::gru_attr_t>(attr3);
  auto key4 = jit::JitCodeKey<jit::gru_attr_t>(attr4);
T
tensor-tang 已提交
1041

T
tensor-tang 已提交
1042 1043 1044
  EXPECT_TRUE(key1 != key2);
  EXPECT_TRUE(key2 == key3);
  EXPECT_TRUE(key3 != key4);
1045
}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

TEST(JITKernel, kernel_func) {
  auto f1 =
      jit::KernelFuncs<jit::kVAdd, jit::XYZNTuples<float>, CPUPlace>::Cache()
          .At(3);
  auto f2 = jit::KernelFuncs<jit::kVAdd, jit::XYZNTuples<float>,
                             CPUPlace>::Cache()[3];
  EXPECT_TRUE(f1 == f2);

  f1 = jit::KernelFuncs<jit::kVAdd, jit::XYZNTuples<float>, CPUPlace>::Cache()
           .At(3);
  f2 = jit::KernelFuncs<jit::kVAdd, jit::XYZNTuples<float>, CPUPlace>::Cache()
           .At(4);
  EXPECT_TRUE(f1 != f2);
}