quantize_mkldnn_op.cc 4.5 KB
Newer Older
X
xiaoli.liu@intel.com 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/quantize_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
X
xiaoli.liu@intel.com 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
X
xiaoli.liu@intel.com 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace operators {

using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using platform::to_void_cast;
using Tensor = framework::Tensor;
using framework::DataLayout;
using mkldnn::stream;
using platform::GetMKLDNNFormat;

template <typename T>
class QuantOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto scale_data = ctx.Attr<float>("Scale");
    auto* output = ctx.Output<Tensor>("Output");
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& engine = dev_ctx.GetEngine();

    std::vector<primitive> pipeline;
45 46
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
X
xiaoli.liu@intel.com 已提交
47 48 49 50

    const T* input_data = input->data<T>();

    bool is_negative = ctx.Attr<bool>("is_negative_input");
51
    std::string key = platform::CreateKey(src_tz, scale_data, is_negative,
H
hong 已提交
52
                                          ctx.OutputName("Output"));
53 54 55 56 57
    const std::string key_prim = key + "@reorder_p";
    const std::string key_src_mem = key + "@src_mem";
    const std::string key_dst_mem = key + "@dst_mem";

    std::shared_ptr<mkldnn::memory> src_memory;
X
xiaoli.liu@intel.com 已提交
58
    std::shared_ptr<mkldnn::memory> dst_memory;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    std::shared_ptr<reorder> reorder_p;
    reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));

    if (reorder_p == nullptr) {
      mkldnn::primitive_attr attri;
      int mask = 0;
      attri.set_output_scales(mask, {scale_data});

      auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
                                            input->format());
      auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
      src_memory =
          std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
      std::shared_ptr<primitive::at> src_memory_p =
          std::shared_ptr<primitive::at>(new primitive::at(*src_memory));

      std::shared_ptr<mkldnn::memory::primitive_desc> dst_pd;
      if (is_negative) {
77 78
        platform::SetDstMemoryQuantized<int8_t>(ctx, output, dst_tz, engine,
                                                dst_pd, dst_memory);
79
      } else {
80 81
        platform::SetDstMemoryQuantized<uint8_t>(ctx, output, dst_tz, engine,
                                                 dst_pd, dst_memory);
82 83 84 85 86 87 88 89 90
      }
      auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
          new reorder::primitive_desc(src_pd, *dst_pd, attri));
      reorder_p = std::shared_ptr<reorder>(
          new reorder(*reorder_pd, *src_memory_p, *dst_memory));

      dev_ctx.SetBlob(key_prim, reorder_p);
      dev_ctx.SetBlob(key_src_mem, src_memory);
      dev_ctx.SetBlob(key_dst_mem, dst_memory);
X
xiaoli.liu@intel.com 已提交
91
    } else {
92 93 94 95 96 97 98 99 100 101 102 103
      src_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_src_mem));
      src_memory->set_data_handle(to_void_cast<T>(input_data));

      dst_memory = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(key_dst_mem));
      auto place = ctx.GetPlace();
      if (is_negative) {
        dst_memory->set_data_handle(output->mutable_data<int8_t>(place));
      } else {
        dst_memory->set_data_handle(output->mutable_data<uint8_t>(place));
      }
X
xiaoli.liu@intel.com 已提交
104
    }
105

X
xiaoli.liu@intel.com 已提交
106 107 108 109 110 111 112 113 114 115 116 117
    pipeline.push_back(*reorder_p);
    stream(stream::kind::eager).submit(pipeline).wait();
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory));
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::QuantOpKernel<float>);