deformable_conv_grad_kernel.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/deformable_conv_grad_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void DeformableConvGradKernel(const Context& dev_ctx,
                              const DenseTensor& x,
                              const DenseTensor& offset,
                              const DenseTensor& filter,
                              const paddle::optional<DenseTensor>& mask,
                              const DenseTensor& out_grad,
                              const std::vector<int>& strides,
                              const std::vector<int>& paddings,
                              const std::vector<int>& dilations,
                              int deformable_groups,
                              int groups,
                              int im2col_step,
                              DenseTensor* dx,
                              DenseTensor* offset_grad,
                              DenseTensor* filter_grad,
                              DenseTensor* mask_grad) {
  T* dx_data = nullptr;
  T* dw_data = nullptr;
  T* dmask_data = nullptr;
  T* doffset_data = nullptr;

  if (dx != nullptr) {
    dx_data = dev_ctx.template Alloc<T>(dx);
  }
  if (filter_grad != nullptr) {
    dw_data = dev_ctx.template Alloc<T>(filter_grad);
  }
  if (offset_grad != nullptr) {
    doffset_data = dev_ctx.template Alloc<T>(offset_grad);
  }
  if (mask_grad != nullptr) {
    dmask_data = dev_ctx.template Alloc<T>(mask_grad);
  }

  PADDLE_ENFORCE_EQ(
      deformable_groups == 1,
      true,
      errors::InvalidArgument(
          ("XPU only support deformable_groups == 1 in deformable_conv op.")));
  PADDLE_ENFORCE_EQ(
      groups == 1,
      true,
      errors::InvalidArgument(
          ("XPU only support groups == 1 in deformable_conv op.")));
  PADDLE_ENFORCE_EQ(filter.dims()[2] <= 8 && filter.dims()[3] <= 8,
                    true,
                    errors::InvalidArgument(
                        "Filter high and weight should less than 8 on xpu "
                        "in deformable_conv op."));

  const int batch_size = static_cast<int>(x.dims()[0]);
  std::vector<int64_t> output_shape_vec(phi::vectorize(out_grad.dims()));
  const T* output_grad_ptr = out_grad.data<T>();
  const T* input_ptr = x.data<T>();
  const T* filter_ptr = filter.data<T>();
  const float* offset_ptr = offset.data<float>();
  const float* mask_ptr = mask->data<float>();
  if (dx_data == nullptr) {
    PADDLE_ENFORCE_EQ(
        xpu_malloc(reinterpret_cast<void**>(&dx_data), x.numel() * sizeof(T)),
        XPU_SUCCESS,
        errors::ResourceExhausted("XPU has no enough memory"));
  }
  if (dw_data == nullptr) {
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&dw_data),
                                 filter.numel() * sizeof(T)),
                      XPU_SUCCESS,
                      errors::ResourceExhausted("XPU has no enough memory"));
  }
  if (doffset_data == nullptr) {
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&doffset_data),
                                 offset.numel() * sizeof(T)),
                      XPU_SUCCESS,
                      errors::ResourceExhausted("XPU has no enough memory"));
  }
  if (dmask_data == nullptr) {
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&dmask_data),
                                 mask->numel() * sizeof(T)),
                      XPU_SUCCESS,
                      errors::ResourceExhausted("XPU has no enough memory"));
  }

  int input_dim = x.numel() / x.dims()[0];
  int input_offset_dim = offset.numel() / offset.dims()[0];
  int input_mask_dim = mask->numel() / mask->dims()[0];
  int output_dim =
      output_shape_vec[1] * output_shape_vec[2] * output_shape_vec[3];
  std::vector<int> ksize{static_cast<int>(filter.dims()[2]),
                         static_cast<int>(filter.dims()[3])};
  int n = im2col_step;
  int c = x.dims()[1];
  int h = x.dims()[2];
  int w = x.dims()[3];
  int f = filter.dims()[0];

  T* filter_grad_tmp = nullptr;
  PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&filter_grad_tmp),
                               filter_grad->numel() * sizeof(T)),
                    XPU_SUCCESS,
                    errors::ResourceExhausted("XPU has no enough memory"));

  // set zeros for d_table_data
  const int zero = 0;
  int r_dx = xpu::constant<T>(dev_ctx.x_context(), dx_data, x.numel(), zero);
  PADDLE_ENFORCE_XDNN_SUCCESS(r_dx, "constant");
  int r_dw =
      xpu::constant<T>(dev_ctx.x_context(), dw_data, filter.numel(), zero);
  PADDLE_ENFORCE_XDNN_SUCCESS(r_dw, "constant");
  int r_doffset =
      xpu::constant<T>(dev_ctx.x_context(), doffset_data, offset.numel(), zero);
  PADDLE_ENFORCE_XDNN_SUCCESS(r_doffset, "constant");
  int r_dmask =
      xpu::constant<T>(dev_ctx.x_context(), dmask_data, mask->numel(), zero);
  PADDLE_ENFORCE_XDNN_SUCCESS(r_dmask, "constant");
  int r_filter = xpu::constant<T>(
      dev_ctx.x_context(), filter_grad_tmp, filter.numel(), zero);
  PADDLE_ENFORCE_XDNN_SUCCESS(r_filter, "constant");

  for (int i = 0; i < batch_size / im2col_step; ++i) {
    int r = xpu::deformable_conv_grad<float, float, float, int>(
        dev_ctx.x_context(),
        input_ptr + i * im2col_step * input_dim,
        filter_ptr,
        offset_ptr + i * im2col_step * input_offset_dim,
        mask_ptr + i * im2col_step * input_mask_dim,
        output_grad_ptr + i * im2col_step * output_dim,
        dx_data + i * im2col_step * input_dim,
        filter_grad_tmp,
        doffset_data + i * im2col_step * input_offset_dim,
        dmask_data + i * im2col_step * input_mask_dim,
        n,
        c,
        h,
        w,
        f,
        ksize,
        strides,
        paddings,
        dilations,
        groups,
        deformable_groups,
        nullptr,
        nullptr,
        nullptr,
        nullptr,
        nullptr,
        true);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "deformable_conv_grad");

    r = baidu::xpu::api::add<T>(
        dev_ctx.x_context(), filter_grad_tmp, dw_data, dw_data, filter.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "add");
  }

  dev_ctx.Wait();
  xpu_free(filter_grad_tmp);
  if (dx == nullptr) {
    xpu_free(dx_data);
  }
  if (filter_grad == nullptr) {
    xpu_free(dw_data);
  }
  if (offset_grad == nullptr) {
    xpu_free(doffset_data);
  }
  if (mask_grad == nullptr) {
    xpu_free(dmask_data);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(deformable_conv_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::DeformableConvGradKernel,
                   float) {}