cholesky_solve_op.cc 4.6 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/binary.h"
Z
zhiboniu 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

namespace paddle {
namespace operators {

class CholeskySolveOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddComment(R"DOC(Solves a linear system of equations with a positive "
                "semidefinite matrix to be inverted given its Cholesky factor matrix uu."
                ")DOC");
    AddInput("X", "(Tensor) The input tensor, shape of (*,m,k)");
    AddInput("Y",
             "(Tensor) The input tensor, shape of (*,m,m) composed of upper or "
             "lower triangular Cholesky factor");
    AddOutput("Out", "(Tensor) The output tensor, shape same to X");
    AddAttr<bool>("upper",
                  "whether to consider the Cholesky factor "
                  "as a lower or upper triangular matrix")
        .SetDefault(false);
  }
};

class CholeskySolveOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Y"), ctx.GetPlace());
  }
};

class CholeskySolveOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto var_type = ctx->GetInputType("Y", 0);
    auto data_type = ctx->GetInputDataType("Y", 0);

    ctx->SetOutputType("Out", var_type, framework::ALL_ELEMENTS);
    ctx->SetOutputDataType("Out", data_type, framework::ALL_ELEMENTS);
  }
};

template <typename T>
class CholeskySolveOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("cholesky_solve_grad");
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("Out", this->Output("Out"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));

    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
  }
};

class CholeskySolveGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "cholesky_solve");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "cholesky_solve");
    OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "cholesky_solve");
90 91 92 93
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "cholesky_solve");
Z
zhiboniu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
113

114 115
DECLARE_INFER_SHAPE_FUNCTOR(cholesky_solve,
                            CholeskySolveInferShapeFunctor,
116 117
                            PD_INFER_META(phi::CholeskySolveInferMeta));

118 119
REGISTER_OPERATOR(cholesky_solve,
                  ops::CholeskySolveOp,
Z
zhiboniu 已提交
120 121 122
                  ops::CholeskySolveOpMaker,
                  ops::CholeskySolveOpVarTypeInference,
                  ops::CholeskySolveOpGradMaker<paddle::framework::OpDesc>,
123 124
                  ops::CholeskySolveOpGradMaker<paddle::imperative::OpBase>,
                  CholeskySolveInferShapeFunctor);
Z
zhiboniu 已提交
125 126

REGISTER_OPERATOR(cholesky_solve_grad, ops::CholeskySolveGradOp);