slice_op.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/slice_op_plugin.h"
17
#include "paddle/fluid/inference/tensorrt/plugin/special_slice_plugin.h"
18 19 20 21 22 23 24 25 26

namespace paddle {
namespace inference {
namespace tensorrt {

class SliceOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
27 28
    // This OP is implemented by trt dynamic shpae plugin.
    // Dynamic shape plugin requires TRT version greater than 6.0.
29 30 31 32 33
    VLOG(4) << "convert slice op to tensorrt layer";
    framework::OpDesc op_desc(op, nullptr);
    // Declare inputs
    auto* input = engine_->GetITensor(op_desc.Input("Input")[0]);

34 35 36 37 38 39
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      engine_->SetTensorDynamicRange(input, out_scale);
    }

40
    std::vector<int> axes =
41
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("axes"));
42
    std::vector<int> starts =
43
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("starts"));
44
    std::vector<int> ends =
45
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ends"));
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    auto input_dims = input->getDimensions();
    if (!engine_->with_dynamic_shape()) {
      // notice that input shape is [CHW] without batch axis when input has
      // static shape
      for (size_t i = input_dims.nbDims; i > 0; i--) {
        input_dims.d[i] = input_dims.d[i - 1];
      }
      input_dims.d[0] = 1;  // fake batchsize, not useful here
      for (size_t i = 0; i < axes.size(); i++) {
        if (starts[i] < 0) {
          starts[i] = std::max(starts[i] + input_dims.d[axes[i]], 0);
        }
        if (ends[i] < 0) {
          ends[i] = std::max(ends[i] + input_dims.d[axes[i]], 0);
        }
        ends[i] = std::min(ends[i], input_dims.d[axes[i]]);
        PADDLE_ENFORCE_GT(
            ends[i], starts[i],
            platform::errors::InvalidArgument(
                "Attr(ends) should be greater than attr(starts) in "
                "slice op. But received ends = %d, starts = %d.",
                ends[i], starts[i]));
      }
    }

72 73
    nvinfer1::ILayer* layer = nullptr;
    if (engine_->with_dynamic_shape()) {
74
#if IS_TRT_VERSION_GE(6000)
75 76 77 78
      if (engine_->use_oss() && engine_->with_ernie()) {
        std::vector<nvinfer1::ITensor*> plugin_inputs;
        // plugin_inputs.emplace_back(trans_layer->getOutput(0));
        plugin_inputs.emplace_back(input);
79 80 81 82 83 84 85 86 87 88

        std::string pos_name;
        if (engine_->Has("ernie_pos_name")) {
          pos_name = engine_->Get<std::string>("ernie_pos_name");
        } else {
          // hard code for compatibility
          pos_name = engine_->network()->getInput(2)->getName();
        }
        plugin_inputs.emplace_back(
            engine_->GetITensor(pos_name));  // cu_seqlens, eval_placeholder_2
89 90 91 92

        // bool ban_fp16 = engine_->disable_trt_plugin_fp16();
        plugin::SpecialSlicePluginDynamic* plugin =
            new plugin::SpecialSlicePluginDynamic();
93 94
        layer = engine_->AddDynamicPlugin(plugin_inputs.data(),
                                          plugin_inputs.size(), plugin);
95
      } else {
96 97
        bool with_fp16 =
            engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
98
        plugin::SlicePluginDynamic* plugin =
99
            new plugin::SlicePluginDynamic(starts, ends, axes, with_fp16);
100
        layer = engine_->AddDynamicPlugin(&input, 1, plugin);
101
      }
102
#else
103 104 105
      PADDLE_THROW(platform::errors::Fatal(
          "You are running the TRT Dynamic Shape mode, need to confirm that "
          "your TRT version is no less than 6.0"));
106 107
#endif
    } else {
108 109
      bool with_fp16 =
          engine_->WithFp16() && !engine_->disable_trt_plugin_fp16();
110
      plugin::SlicePlugin* plugin =
111
          new plugin::SlicePlugin(starts, ends, axes, with_fp16);
112
      layer = engine_->AddPlugin(&input, 1, plugin);
113 114 115
    }

    auto output_name = op_desc.Output("Out")[0];
116
    RreplenishLayerAndOutput(layer, "slice", {output_name}, test_mode);
117 118 119 120 121 122 123 124
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(slice, SliceOpConverter);