ipu_executor.cc 11.7 KB
Newer Older
J
jianghaicheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "paddle/fluid/platform/device/ipu/ipu_executor.h"

using float16 = paddle::platform::float16;
J
jianghaicheng 已提交
18 19 20 21 22

namespace paddle {
namespace platform {
namespace ipu {

23 24 25 26 27 28 29 30
Executor::~Executor() {
  Detach();
  session_.reset();
  executor_resources_.reset();
}

void Executor::Prepare(const std::string &proto) {
  VLOG(10) << "enter Executor::Prepare";
J
jianghaicheng 已提交
31

32 33
  AcquireDevice();
  executor_resources_ = std::make_unique<ExecutorResources>();
J
jianghaicheng 已提交
34 35 36

  auto art = popart::AnchorReturnType("All");
  std::map<popart::TensorId, popart::AnchorReturnType> anchor_ids;
37
  for (const auto &id : compiler_resources_->outputs) {
J
jianghaicheng 已提交
38 39 40 41
    anchor_ids.emplace(id, art);
  }
  auto dataFlow = popart::DataFlow(ipu_strategy_->batches_per_step, anchor_ids);

42
  if (ipu_strategy_->is_training) {
J
jianghaicheng 已提交
43
    VLOG(10) << "Creating TrainingSession from Onnx Model...";
44
    auto optimizer = compiler_resources_->NewOptimizer();
J
jianghaicheng 已提交
45
    session_ = popart::TrainingSession::createFromOnnxModel(
46 47 48
        proto, dataFlow, compiler_resources_->loss_var, *optimizer, device_,
        popart::InputShapeInfo(), ipu_strategy_->popart_options,
        ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
49 50 51
  } else {
    VLOG(10) << "Creating InferenceSession from Onnx Model...";
    session_ = popart::InferenceSession::createFromOnnxModel(
52 53
        proto, dataFlow, device_, popart::InputShapeInfo(),
        ipu_strategy_->popart_options, ipu_strategy_->popart_patterns);
J
jianghaicheng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  }
  VLOG(10) << "Creating session from Onnx Model...done";

  VLOG(10) << "Preparing session device...";
  session_->prepareDevice();
  VLOG(10) << "Preparing session device...done";

  SetWeightsIO();

  VLOG(10) << "Copy weights from paddle to popart...";
  WeightsFromPaddle();
  VLOG(10) << "Copy weights from paddle to popart...done";

  VLOG(10) << "Copy weights from host to device...";
  session_->weightsFromHost();
  VLOG(10) << "Copy weights from host to device...done";

  if (ipu_strategy_->save_init_onnx) {
    session_->modelToHost("test_init.onnx");
  }
74 75
  // init run step
  step_ = 0;
J
jianghaicheng 已提交
76 77
}

78 79
void Executor::Run(const std::vector<const Tensor *> &inputs,
                   const std::vector<Tensor *> &outputs,
J
jianghaicheng 已提交
80
                   const framework::ExecutionContext &ctx) {
81
  VLOG(10) << "enter Executor::Run";
J
jianghaicheng 已提交
82 83 84 85
  // inputs
  std::map<popart::TensorId, popart::IArray &> popart_inputs;
  std::map<popart::TensorId, PaddleIArray> input_wrappers;
  for (size_t i = 0; i < inputs.size(); i++) {
86 87
    auto tensor_id = compiler_resources_->inputs[i];
    input_wrappers.emplace(tensor_id, PaddleIArray(inputs[i]));
J
jianghaicheng 已提交
88 89 90 91 92 93
    popart_inputs.emplace(tensor_id, input_wrappers.at(tensor_id));
  }
  // anchors
  std::map<popart::TensorId, popart::IArray &> popart_anchors;
  std::map<popart::TensorId, PaddleIArray> anchor_wrappers;
  for (size_t i = 0; i < outputs.size(); i++) {
94
    auto tensor_id = compiler_resources_->outputs[i];
J
jianghaicheng 已提交
95 96 97 98 99 100 101
    // get dims & dtype from session
    auto fetch_info = session_->getInfo(tensor_id);
    auto output_shape = fetch_info.shape();
    if (ipu_strategy_->batches_per_step > 1) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->batches_per_step);
    }
102 103 104 105 106 107 108 109 110 111
    if (ipu_strategy_->popart_options.enableGradientAccumulation) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.accumulationFactor);
    }
    if (ipu_strategy_->popart_options.enableReplicatedGraphs) {
      output_shape.insert(output_shape.begin(),
                          ipu_strategy_->popart_options.replicatedGraphCount);
    }

    auto *tensor = outputs[i];
J
jianghaicheng 已提交
112 113 114
    tensor->Resize(framework::make_ddim(output_shape));
    auto fetch_dtype = fetch_info.dataType();
    auto paddle_type = PopartType2VarType(fetch_dtype);
115 116
    tensor->mutable_data(ctx.GetPlace(),
                         framework::TransToPtenDataType(paddle_type));
J
jianghaicheng 已提交
117 118 119
    anchor_wrappers.emplace(tensor_id, PaddleIArray(tensor));
    popart_anchors.emplace(tensor_id, anchor_wrappers.at(tensor_id));
  }
120 121 122 123 124 125 126 127 128 129
  VLOG(10) << "Prepared inputs/anchors";

  if (ipu_strategy_->is_training && compiler_resources_->with_lr_sched) {
    VLOG(10) << "Update learning_rate";
    auto new_lr =
        GetSingleVarFromScope<float>(scope_, compiler_resources_->lr_var);
    VLOG(10) << "New Lr: " << new_lr;
    auto *optimizer = compiler_resources_->UpdateOptimizer(new_lr);
    auto *session = dynamic_cast<popart::TrainingSession *>(session_.get());
    session->updateOptimizerFromHost(optimizer);
J
jianghaicheng 已提交
130 131 132 133 134 135 136
  }

  popart::StepIO stepio(popart_inputs, popart_anchors);
  VLOG(10) << "Running...";
  session_->run(stepio);
  VLOG(10) << "Running...done";

137 138 139
  step_++;
  if (ipu_strategy_->is_training &&
      step_ % ipu_strategy_->save_per_n_step == 0) {
J
jianghaicheng 已提交
140 141
    session_->weightsToHost();
    WeightsToPaddle();
142 143
    if (ipu_strategy_->save_onnx_checkpoint) {
      session_->modelToHost("test_last" + std::to_string(step_) + ".onnx");
J
jianghaicheng 已提交
144 145 146 147
    }
  }
}

148 149 150 151 152 153
void Executor::AcquireDevice() {
  VLOG(10) << "enter Executor::AcquireDevice";
  if (device_) {
    Detach();
    device_.reset();
  }
J
jianghaicheng 已提交
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168
  bool use_ipu_model = GetBoolEnv("POPLAR_IPUMODEL");
  if (use_ipu_model) {
    std::map<std::string, std::string> deviceOpts{{"numIPUs", "1 "}};
    device_ = popart::DeviceManager::createDeviceManager().createIpuModelDevice(
        deviceOpts);
  } else {
    device_ =
        popart::DeviceManager::createDeviceManager().acquireAvailableDevice(
            RequestIpus(ipu_strategy_->num_ipus));
    PADDLE_ENFORCE_NOT_NULL(device_, platform::errors::Unavailable(
                                         "Can't attach IPU, ipu_num = %d.",
                                         RequestIpus(ipu_strategy_->num_ipus)));
  }
  VLOG(10) << "leave Executor::AcquireDevice";
J
jianghaicheng 已提交
169 170
}

171 172 173 174 175 176
void Executor::Detach() {
  if (device_ && device_->isAttached()) {
    VLOG(10) << "trying to detach IPU";
    device_->detach();
    VLOG(10) << " detached IPU";
  }
J
jianghaicheng 已提交
177 178 179
}

void Executor::SetWeightsIO() {
180 181
  auto opt_type = compiler_resources_->optimizer_type;
  VLOG(10) << "SetWeightsIO for " << opt_type;
J
jianghaicheng 已提交
182
  auto pre_post_fix = GetOptPrePostfix(opt_type);
183
  for (const auto &weight_id : compiler_resources_->weights) {
J
jianghaicheng 已提交
184 185 186 187 188 189 190 191 192
    for (const auto &pair : pre_post_fix) {
      // pair.first : popart prefix, pair.second : paddle postfix
      auto popart_var_name = pair.first + weight_id;
      auto paddle_var_name = weight_id + pair.second;

      if (scope_->FindVar(paddle_var_name) == nullptr) {
        continue;
      }

193 194 195 196
      if (!session_->hasInfo(popart_var_name)) {
        continue;
      }

J
jianghaicheng 已提交
197
      auto var = scope_->GetVar(paddle_var_name);
198
      auto data_ptr = var->GetMutable<framework::LoDTensor>()->data();
J
jianghaicheng 已提交
199 200

      auto tensor_info = session_->getInfo(popart_var_name);
201 202 203 204
      executor_resources_->weights_io.insert(popart_var_name,
                                             {data_ptr, tensor_info});
      executor_resources_->weights_and_opt_state.emplace_back(
          std::make_pair(popart_var_name, paddle_var_name));
J
jianghaicheng 已提交
205 206 207 208
    }
  }
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
// align_to_popart: align dtype to popart if true, else to paddle
void Executor::ConvertWeights(bool align_to_popart) {
  for (auto weight_pair : executor_resources_->weights_and_opt_state) {
    auto paddle_var = scope_->GetVar(weight_pair.second);
    auto paddle_var_dtype = VarType2PopartType(
        paddle_var->GetMutable<framework::LoDTensor>()->type());

    PADDLE_ENFORCE_EQ((paddle_var_dtype == popart::DataType::FLOAT ||
                       paddle_var_dtype == popart::DataType::FLOAT16),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "Paddle, but received type is %s.",
                          paddle_var_dtype));

    popart::TensorInfo info = session_->getInfo(weight_pair.first);
    auto popart_var_dtype = info.dataType();
    PADDLE_ENFORCE_EQ((popart_var_dtype == popart::DataType::FLOAT ||
                       popart_var_dtype == popart::DataType::FLOAT16),
                      true,
                      platform::errors::InvalidArgument(
                          "Currently, we only support FLOAT16 and FLOAT with "
                          "popart, but received type is %s.",
                          popart_var_dtype));

    if (paddle_var_dtype == popart_var_dtype) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have the same dtype : " << popart_var_dtype;
      continue;
    } else if (paddle_var_dtype == popart::DataType::FLOAT) {
      VLOG(10) << weight_pair.first << " and " << weight_pair.second
               << " have different dtype : " << popart_var_dtype;
      auto *data_ptr =
          paddle_var->GetMutable<framework::LoDTensor>()->data<float>();

      auto num_elem = info.nelms();
      if (align_to_popart) {
        std::vector<uint16_t> fp16_data;
        std::transform(data_ptr, data_ptr + num_elem,
                       std::back_inserter(fp16_data),
                       [&](float elem) { return popart::floatToHalf(elem); });
        memcpy(reinterpret_cast<void *>(data_ptr), fp16_data.data(),
               num_elem * sizeof(float16));
      } else {
        std::vector<float> fp32_data;
        auto fp16_data_ptr = reinterpret_cast<uint16_t *>(data_ptr);
        std::transform(fp16_data_ptr, fp16_data_ptr + num_elem,
                       std::back_inserter(fp32_data), [&](uint16_t elem) {
                         return popart::halfToFloat(elem);
                       });
        memcpy(reinterpret_cast<void *>(data_ptr), fp32_data.data(),
               num_elem * sizeof(float));
      }
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Convert Paddle FLOAT16 to popart FLOAT"));
    }
  }
J
jianghaicheng 已提交
267 268
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Paddle -> Popart        |
// |  FLOAT  | FLOAT16 | floatToHalf -> Paddle -> Popart |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Paddle -> Popart        |
// |-----------------------------------------------------|
// floatToHalf -> Paddle: cast then save to paddle
// Paddle -> Popart: copy from paddle to popart
void Executor::WeightsFromPaddle() {
  ConvertWeights(true);
  session_->writeWeights(executor_resources_->weights_io);
}
J
jianghaicheng 已提交
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297
// |-----------------------------------------------------|
// | Paddle  | Popart  |             Method              |
// |-----------------------------------------------------|
// |  FLOAT  |  FLOAT  |         Popart -> Paddle        |
// |  FLOAT  | FLOAT16 | Popart -> Paddle -> halfToFloat |
// | FLOAT16 |  FLOAT  |         Unimplemented           |
// | FLOAT16 | FLOAT16 |         Popart -> Paddle        |
// |-----------------------------------------------------|
// Paddle -> halfToFloat: cast then save to paddle
// Popart -> Paddle: copy from paddle to popart
void Executor::WeightsToPaddle() {
  session_->readWeights(executor_resources_->weights_io);
  ConvertWeights(false);
}
J
jianghaicheng 已提交
298

299 300 301 302 303 304 305 306
void Executor::SaveModelToHost(const std::string &path) {
  if (session_) {
    session_->weightsToHost();
    WeightsToPaddle();
    session_->modelToHost(path);
  } else {
    LOG(WARNING) << "Model is empty";
  }
J
jianghaicheng 已提交
307 308 309 310 311
}

}  // namespace ipu
}  // namespace platform
}  // namespace paddle