conv_fusion_op.cu 19.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <array>
16
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
17 18
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
19 20
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/operators/math/padding.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
Q
qingqing01 已提交
22

23
DECLARE_int64(cudnn_exhaustive_search_times);
Q
qingqing01 已提交
24 25 26 27

namespace paddle {
namespace operators {

R
ronnywang 已提交
28
#if PADDLE_WITH_HIP || CUDNN_VERSION >= 7100
Q
qingqing01 已提交
29 30 31 32 33 34
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;
35
using framework::AlgorithmsCache;
36
using framework::ConvSearchCache;
37

Q
qingqing01 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* residual = ctx.Input<Tensor>("ResidualData");
    auto* output = ctx.Output<Tensor>("Output");
51
    output->mutable_data<T>(ctx.GetPlace());
Q
qingqing01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    const std::string activation = ctx.Attr<std::string>("activation");
    int groups = ctx.Attr<int>("groups");
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");

    const T* filter_data = filter->data<T>();
    const T* bias_data = bias->data<T>();
65 66 67 68

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

69 70
    Tensor transformed_input_channel(input->dtype());
    Tensor transformed_output(output->dtype());
71 72
    transformed_input_channel = *input;
    transformed_output = *output;
73 74
    T* output_data = transformed_output.data<T>();

Q
qingqing01 已提交
75
    const T* residual_data = residual ? residual->data<T>() : output_data;
76

77 78 79
    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
    auto filter_dims = filter->dims();
80 81
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
133 134 135 136
          PADDLE_THROW(platform::errors::PermissionDenied(
              "Operator Conv2DFusion expects Input to be a 4-D or 5-D Tensor. "
              "But recieved the actual dimension = %d, shape = [%s].",
              rank, transformed_input_channel.dims()));
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      }

    } else {
      transformed_input = transformed_input_channel;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
Q
qingqing01 已提交
153 154 155 156 157 158 159 160 161 162 163 164

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedTensorDescriptor bias_desc;
    ScopedConvolutionDescriptor conv_desc;
    ScopedActivationDescriptor act_desc;
    DataLayout layout = DataLayout::kNCHW;
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }
R
ronnywang 已提交
165 166 167
#ifdef PADDLE_WITH_HIP
    miopenConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(padding_common, strides, dilations);
168
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        platform::dynload::miopenSetConvolutionGroupCount(cudnn_conv_desc,
                                                          groups));
    // Now only support NCHW
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
    miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize<int>(transformed_input.dims()));
    miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize<int>(transformed_output.dims()));
    miopenTensorDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize<int>(filter->dims()));
    miopenTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    miopenActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);
Q
qingqing01 已提交
184

R
ronnywang 已提交
185 186 187 188 189 190 191 192
    miopenConvFwdAlgorithm_t algo;
    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    auto x_dims = framework::vectorize(transformed_input.dims());
    auto f_dims = framework::vectorize(filter->dims());

    size_t workspace_size = 0;
193
    PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
194 195 196 197 198 199
        platform::dynload::miopenConvolutionForwardGetWorkSpaceSize(
            handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc,
            cudnn_output_desc, &workspace_size));
    int find_count;
    miopenConvAlgoPerf_t find_result;
    auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
200
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213
          platform::dynload::miopenFindConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, input_data, cudnn_filter_desc,
              filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
              kNUM_CUDNN_FWD_ALGS, &find_count, &find_result,
              cudnn_workspace_ptr, workspace_size, false));
    };
    workspace_handle.RunFuncSync(cudnn_find_func, workspace_size);
    algo = find_result.fwd_algo;
    VLOG(3) << "cuDNN forward algo " << algo;

    {
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
      auto cudnn_func = [&](void* cudnn_workspace) {
214
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenConvolutionForward(
R
ronnywang 已提交
215 216 217 218 219
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, &beta, cudnn_output_desc,
            output_data, cudnn_workspace, workspace_size));
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size);
220
      PADDLE_ENFORCE_GPU_SUCCESS(
R
ronnywang 已提交
221 222 223 224
          platform::dynload::miopenConvolutionForwardBias(
              handle, &alpha, cudnn_bias_desc, bias_data, &beta,
              cudnn_output_desc, output_data));
      if (activation != "identity") {
225
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenActivationForward(
R
ronnywang 已提交
226 227 228 229
            handle, cudnn_act_desc, &alpha, cudnn_output_desc, output_data,
            &beta, cudnn_output_desc, output_data));
      }
      if (residual) {
230
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::miopenOpTensor(
R
ronnywang 已提交
231 232 233 234 235 236
            handle, miopenTensorOpAdd, &alpha, cudnn_output_desc, output_data,
            &alpha, cudnn_output_desc, residual_data, &beta, cudnn_output_desc,
            output_data));
      }
    }
#else  // PADDLE_WITH_HIP
Q
qingqing01 已提交
237
    cudnnConvolutionDescriptor_t cudnn_conv_desc =
238
        conv_desc.descriptor<T>(padding_common, strides, dilations);
239 240
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionGroupCount(
        cudnn_conv_desc, groups));
Q
qingqing01 已提交
241 242

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
243
        layout, framework::vectorize<int>(transformed_input.dims()));
Q
qingqing01 已提交
244
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
245
        layout, framework::vectorize<int>(transformed_output.dims()));
Q
qingqing01 已提交
246
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
247
        layout, framework::vectorize<int>(filter->dims()));
Q
qingqing01 已提交
248
    // Now only support NCHW
249 250
    std::vector<int> bias_dim = {
        1, static_cast<int>(transformed_output.dims()[1]), 1, 1};
Q
qingqing01 已提交
251 252 253 254 255 256 257
    cudnnTensorDescriptor_t cudnn_bias_desc =
        bias_desc.descriptor<T>(layout, bias_dim);
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
258
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
259 260
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
261
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
262 263 264 265 266 267 268
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
    auto handle = dev_ctx.cudnn_handle();
C
chengduo 已提交
269
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
Q
qingqing01 已提交
270

271
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
272
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
273
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
274
    if (!platform::allow_tf32_cudnn) {
275 276
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_FMA_MATH));
A
AshburnLee 已提交
277
    }
A
AshburnLee 已提交
278
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
279

280
    auto x_dims = framework::vectorize(transformed_input.dims());
Q
qingqing01 已提交
281
    auto f_dims = framework::vectorize(filter->dims());
282
    if (!exhaustive_search) {
283
#if CUDNN_VERSION >= 8000
284 285 286 287 288
      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
289
      PADDLE_ENFORCE_GPU_SUCCESS(
290
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
291
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
292 293 294
              cudnn_output_desc, kNUM_CUDNN_FWD_ALGS, &perf_count,
              perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
295
      PADDLE_ENFORCE_GPU_SUCCESS(
296 297 298 299 300
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, algo, &workspace_size_in_bytes));
      if (workspace_size_in_bytes > workspace_size_limit)
        workspace_size_limit = workspace_size_in_bytes;
301
#else
302
      PADDLE_ENFORCE_GPU_SUCCESS(
303 304 305 306 307 308
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
              cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
#endif
Q
qingqing01 已提交
309
    } else {
310 311
      std::function<cudnnConvolutionFwdAlgo_t()> search_func =
          [&]() -> cudnnConvolutionFwdAlgo_t {
Q
qingqing01 已提交
312 313 314
        int returned_algo_count;
        std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
            fwd_perf_stat;
C
chengduo 已提交
315
        auto cudnn_find_func = [&](void* cudnn_workspace) {
316
          PADDLE_ENFORCE_GPU_SUCCESS(
C
chengduo 已提交
317 318 319 320
              platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                  handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                  filter_data, cudnn_conv_desc, cudnn_output_desc, output_data,
                  kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
321
                  fwd_perf_stat.data(), cudnn_workspace, workspace_size_limit));
C
chengduo 已提交
322
        };
323
        workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);
Q
qingqing01 已提交
324 325 326 327 328 329 330 331
        VLOG(3) << "Perf result: (algo: stat, time, memory)";
        for (int i = 0; i < returned_algo_count; ++i) {
          const auto& stat = fwd_perf_stat[i];
          VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time << " "
                  << stat.memory;
        }
        return fwd_perf_stat[0].algo;
      };
332
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>& algo_cache =
333
          *(framework::ConvSearchCache::Instance().GetConvFusion());
Q
qingqing01 已提交
334 335 336
      int search_times = ctx.Attr<int>("search_times");
      search_times = std::max(
          static_cast<int>(FLAGS_cudnn_exhaustive_search_times), search_times);
337
      // TODO(dangqingqing): Unify this if-else.
Q
qingqing01 已提交
338 339 340 341
      if (search_times > 0) {
        // The searched algo will be cached by `search_times` times for
        // different input dimension. For other dimensions, select the algo
        // of closest area.
342 343
        algo = algo_cache.GetAlgorithm(x_dims[2] * x_dims[3], search_times, 0,
                                       search_func);
Q
qingqing01 已提交
344
      } else {
345
        auto dtype = platform::CudnnDataType<T>::type;
346
        algo = algo_cache.GetAlgorithm(x_dims, f_dims, strides, paddings,
347
                                       dilations, 0, dtype, search_func);
Q
qingqing01 已提交
348 349 350 351
      }
      VLOG(3) << "choose algo " << algo;
    }

352
    PADDLE_ENFORCE_GPU_SUCCESS(
353 354
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
355
            cudnn_output_desc, algo, &workspace_size_in_bytes));
356 357 358 359 360 361 362
    PADDLE_ENFORCE_LE(
        workspace_size_in_bytes, workspace_size_limit,
        platform::errors::InvalidArgument(
            "The actual workspace size to be allocated for cuDNN is expected "
            "to be less than the limit. But recieved: the actual workspace "
            "size = %d, limit = %d.",
            workspace_size_in_bytes, workspace_size_limit));
Q
qingqing01 已提交
363

N
nhzlx 已提交
364
    if ((activation == "identity") && (!residual)) {
365 366 367 368 369 370
      // Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
      // enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
      // But test in some case, the speed is slower, change to use
      // cudnnConvolutionForward and cudnnAddTensor
      // ------------- cudnn conv forward and bias add ---------------------
      ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
C
chengduo 已提交
371
      auto cudnn_func = [&](void* cudnn_workspace) {
372
        PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnConvolutionForward(
373 374 375
            handle, &alpha, cudnn_input_desc, input_data, cudnn_filter_desc,
            filter_data, cudnn_conv_desc, algo, cudnn_workspace,
            workspace_size_in_bytes, &beta, cudnn_output_desc, output_data));
C
chengduo 已提交
376 377
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
378
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnAddTensor(
379 380
          handle, &alpha, cudnn_bias_desc, bias_data, &alpha, cudnn_output_desc,
          output_data));
381 382 383 384 385 386 387
    } else {
      if (activation == "identity") {
        algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
      }
      // ------------------- cudnn conv+bias+act forward --------------------
      ScalingParamType<T> alpha1 = 1.0f;
      ScalingParamType<T> alpha2 = residual ? 1.0f : 0.0f;
C
chengduo 已提交
388
      auto cudnn_func = [&](void* cudnn_workspace) {
389
        PADDLE_ENFORCE_GPU_SUCCESS(
390 391 392 393 394
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha1, cudnn_input_desc, input_data,
                cudnn_filter_desc, filter_data, cudnn_conv_desc, algo,
                cudnn_workspace, workspace_size_in_bytes, &alpha2,
                cudnn_output_desc, residual_data, cudnn_bias_desc, bias_data,
395
                cudnn_act_desc, cudnn_output_desc, output_data));
C
chengduo 已提交
396 397
      };
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
398
    }
R
ronnywang 已提交
399
#endif
Q
qingqing01 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    std::vector<int> channels = ctx.Attr<std::vector<int>>("split_channels");
    if (channels.size()) {
      auto outs = ctx.MultiOutput<framework::Tensor>("Outputs");
      if (x_dims[0] == 1) {
        // share data with Output
        framework::Tensor t;
        t.ShareDataWith(*output);
        auto y_dims = output->dims();
        t.Resize({y_dims[1], y_dims[2], y_dims[3]});
        int s = 0;
        for (size_t i = 0; i < channels.size(); ++i) {
          int e = s + channels[i];
          outs[i]->ShareDataWith(t.Slice(s, e));
          outs[i]->Resize({x_dims[0], channels[i], y_dims[2], y_dims[3]});
          s = e;
        }
      } else {
        // TODO(qingiqng): do copy when batch size large than 1
418 419 420 421
        PADDLE_THROW(platform::errors::Unimplemented(
            "Input with batch size greater than 1 is unsupported. The recieved "
            "batch size is %d, Input's shape is [%s].",
            x_dims[0], framework::make_ddim(x_dims)));
Q
qingqing01 已提交
422 423
      }
    }
Q
qingqing01 已提交
424 425
  }
};
D
Dang Qingqing 已提交
426
#endif
Q
qingqing01 已提交
427 428 429 430 431

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
ronnywang 已提交
432
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
433 434
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>,
                        ops::CUDNNConvFusionOpKernel<double>);
D
Dang Qingqing 已提交
435
#endif
R
ronnywang 已提交
436 437 438
#ifdef PADDLE_WITH_HIP
REGISTER_OP_CUDA_KERNEL(conv2d_fusion, ops::CUDNNConvFusionOpKernel<float>);
#endif