softmax_with_cross_entropy_op.h 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
caoying03 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
caoying03 已提交
8

C
caoying03 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
caoying03 已提交
14 15

#pragma once
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/operators/math/softmax.h"
20
#include "paddle/fluid/operators/softmax_op.h"
C
caoying03 已提交
21 22 23 24 25 26

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

27
template <typename T>
Y
Yu Yang 已提交
28
class SoftmaxWithCrossEntropyKernel : public framework::OpKernel<T> {
C
caoying03 已提交
29
 public:
C
caoying03 已提交
30
  void Compute(const framework::ExecutionContext& context) const override {
31 32 33
    PADDLE_ENFORCE_EQ(
        platform::is_cpu_place(context.GetPlace()), true,
        platform::errors::Unimplemented("This kernel only runs on CPU."));
C
caoying03 已提交
34
    const Tensor* logits = context.Input<Tensor>("Logits");
35
    const Tensor* labels = context.Input<Tensor>("Label");
C
caoying03 已提交
36
    Tensor* softmax = context.Output<Tensor>("Softmax");
37
    Tensor* loss = context.Output<Tensor>("Loss");
38 39 40 41 42
    const bool soft_label = context.Attr<bool>("soft_label");

    const int rank = logits->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logits->dims()[axis];
C
caoying03 已提交
43

44 45
    softmax->mutable_data<T>(context.GetPlace());
    loss->mutable_data<T>(context.GetPlace());
C
caoying03 已提交
46

47 48 49 50 51 52 53
    const int n = SizeToAxis(axis, logits->dims());
    const int d = SizeFromAxis(axis, logits->dims());
    Tensor logits_2d, softmax_2d, labels_2d, loss_2d;
    logits_2d.ShareDataWith(*logits).Resize({n, d});
    softmax_2d.ShareDataWith(*softmax).Resize({n, d});
    labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
    loss_2d.ShareDataWith(*loss).Resize({n, d / axis_dim});
D
dengkaipeng 已提交
54

Q
QI JUN 已提交
55 56
    auto& dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
57
    math::SoftmaxFunctor<platform::CPUDeviceContext, T, false>()(
58
        dev_ctx, axis_dim, &logits_2d, &softmax_2d);
Q
QI JUN 已提交
59
    math::CrossEntropyFunctor<platform::CPUDeviceContext, T>()(
60 61
        dev_ctx, &loss_2d, &softmax_2d, &labels_2d, soft_label,
        context.Attr<int>("ignore_index"), axis_dim);
C
caoying03 已提交
62
  }
C
caoying03 已提交
63 64
};

65
template <typename T>
Y
Yu Yang 已提交
66
class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel<T> {
C
caoying03 已提交
67
 public:
68
  void Compute(const framework::ExecutionContext& context) const override {
69 70 71
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Loss"));
    const Tensor* labels = context.Input<Tensor>("Label");
72 73
    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
Z
Zeng Jinle 已提交
74 75 76 77 78 79

    const Tensor* softmax = context.Input<Tensor>("Softmax");
    if (logit_grad != softmax) {
      framework::TensorCopy(*softmax, context.GetPlace(),
                            context.device_context(), logit_grad);
    }
80

81
    const bool soft_label = context.Attr<bool>("soft_label");
82
    auto ignore_index = context.Attr<int>("ignore_index");
83 84 85 86 87 88 89 90 91 92 93

    const int rank = logit_grad->dims().size();
    const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
    int axis_dim = logit_grad->dims()[axis];

    const int n = SizeToAxis(axis, logit_grad->dims());
    const int d = SizeFromAxis(axis, logit_grad->dims());
    Tensor logit_grad_2d, labels_2d, out_grad_2d;
    logit_grad_2d.ShareDataWith(*logit_grad).Resize({n, d});
    labels_2d.ShareDataWith(*labels).Resize({n, labels->numel() / n});
    out_grad_2d.ShareDataWith(*out_grad).Resize({n, d / axis_dim});
94

W
wuhuanzhou 已提交
95 96
    auto out_grad_mat = framework::EigenMatrix<T>::From(out_grad_2d);
    auto logit_grad_mat = framework::EigenMatrix<T>::From(logit_grad_2d);
Q
QI JUN 已提交
97 98
    auto& place = *context.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
99
    if (soft_label) {
W
wuhuanzhou 已提交
100
      auto lbl_mat = framework::EigenMatrix<T>::From(labels_2d);
Q
QI JUN 已提交
101
      logit_grad_mat.device(place) =
102
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim)) *
C
caoying03 已提交
103
          (logit_grad_mat - lbl_mat);
104
    } else {
Q
QI JUN 已提交
105
      logit_grad_mat.device(place) =
C
caoying03 已提交
106
          logit_grad_mat *
107
          out_grad_mat.broadcast(Eigen::DSizes<int, 2>(1, axis_dim));
108

C
caoying03 已提交
109
      const int64_t* label_data = labels->data<int64_t>();
110
      T* logit_grad_data = logit_grad->data<T>();
C
caoying03 已提交
111
      const T* out_grad_data = out_grad->data<T>();
112 113 114 115
      const int remain = d / axis_dim;
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < remain; j++) {
          int idx = i * remain + j;
116 117 118 119 120 121 122 123
          if (label_data[idx] == ignore_index) {
            for (int k = 0; k < axis_dim; ++k) {
              logit_grad_data[i * d + k * remain + j] = 0;
            }
          } else {
            logit_grad_data[i * d + label_data[idx] * remain + j] -=
                out_grad_data[idx];
          }
124
        }
125
      }
126 127
    }
  }
C
caoying03 已提交
128 129 130 131
};

}  // namespace operators
}  // namespace paddle