test_unpool1d_op.py 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn.functional as F

paddle.enable_static()
paddle.seed(2022)


def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
        default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d]
                            + kernel_size[d] - 2 * padding[d])
    if output_size is None:
        ret = default_size
    else:
        ret = output_size
    return ret


def unpool1dmax_forward_naive(input, indices, ksize, strides, paddings,
                              output_size):
    s0, s1, s2 = input.shape
    output_size = _unpool_output_size(input, ksize, strides, paddings,
                                      output_size)
    out_lsize = output_size[0]
    out = np.zeros((s0, s1, out_lsize))
    for nidx in range(s0):
        for cidx in range(s1):
            for l in range(s2):
                index = indices[nidx, cidx, l]
                lidx = index % out_lsize
                out[nidx, cidx, lidx] = input[nidx, cidx, l]

    return out


class TestUnpool1DOpAPI_dygraph(unittest.TestCase):
    def test_case(self):
        places = [paddle.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for place in places:
            paddle.disable_static()
            input_data = np.random.rand(1, 3, 16)
            input_x = paddle.to_tensor(input_data)
            output, indices = F.max_pool1d(
                input_x, kernel_size=2, stride=2, return_mask=True)
            output_unpool = F.max_unpool1d(
                output, indices, kernel_size=2, stride=2)
            expected_output_unpool = unpool1dmax_forward_naive(
                output.numpy(), indices.numpy(), [2], [2], [0], [16])
            self.assertTrue(
                np.allclose(output_unpool.numpy(), expected_output_unpool))

        paddle.enable_static()


class TestUnpool1DOpAPI_dygraph2(unittest.TestCase):
    def test_case(self):
        places = [paddle.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for place in places:
            paddle.disable_static()
            input_data = np.random.rand(1, 3, 16)
            input_x = paddle.to_tensor(input_data)
            output, indices = F.max_pool1d(
                input_x, kernel_size=2, stride=2, return_mask=True)
            output_unpool = F.max_unpool1d(
                output, indices, kernel_size=2, stride=None)
            expected_output_unpool = unpool1dmax_forward_naive(
                output.numpy(), indices.numpy(), [2], [2], [0], [16])
            self.assertTrue(
                np.allclose(output_unpool.numpy(), expected_output_unpool))

        paddle.enable_static()


class TestUnpool1DOpAPI_dygraph3(unittest.TestCase):
    def test_case(self):
        places = [paddle.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for place in places:
            paddle.disable_static()
            input_data = np.random.rand(1, 3, 16)
            input_x = paddle.to_tensor(input_data)
            Pool1d = paddle.nn.MaxPool1D(
                kernel_size=2, stride=2, return_mask=True)
            UnPool1d = paddle.nn.MaxUnPool1D(kernel_size=2, stride=2)

            output, indices = Pool1d(input_x)
            output_unpool = UnPool1d(output, indices)
            expected_output_unpool = unpool1dmax_forward_naive(
                output.numpy(), indices.numpy(), [2], [2], [0], [16])
            self.assertTrue(
                np.allclose(output_unpool.numpy(), expected_output_unpool))

        paddle.enable_static()


class TestUnpool1DOpAPI_static(unittest.TestCase):
    def test_case(self):
        paddle.enable_static()
        places = [paddle.CPUPlace()]
        if paddle.fluid.core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))
        for place in places:
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):

                input_data = np.array([[[1, 2, 3, 4], [5, 6, 7, 8],
                                        [9, 10, 11, 12]]]).astype("float32")
                x = paddle.fluid.data(
                    name='x', shape=[1, 3, 4], dtype='float32')
                output, indices = F.max_pool1d(
                    x, kernel_size=2, stride=2, return_mask=True)
                output_unpool = F.max_unpool1d(
                    output, indices, kernel_size=2, stride=None)

                exe = paddle.fluid.Executor(place)
                fetches = exe.run(paddle.fluid.default_main_program(),
                                  feed={"x": input_data},
                                  fetch_list=[output_unpool],
                                  return_numpy=True)
                pool1d_out_np = np.array(
                    [[[2., 4.], [6., 8.], [10., 12.]]]).astype("float32")
                indices_np = np.array(
                    [[[1, 3], [1, 3], [1, 3]]]).astype("int32")
                expected_output_unpool = unpool1dmax_forward_naive(
                    pool1d_out_np, indices_np, [2], [2], [0], [4])
                self.assertTrue(np.allclose(fetches[0], expected_output_unpool))


if __name__ == '__main__':
    unittest.main()