matrix_rank_tol_kernel.cu 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef PADDLE_WITH_HIP
// HIP not support cusolver

#include "paddle/phi/kernels/matrix_rank_tol_kernel.h"

#include <algorithm>
#include <vector>
#include "paddle/fluid/memory/memory.h"
#include "paddle/phi/backends/dynload/cusolver.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/abs_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/compare_functors.h"
#include "paddle/phi/kernels/impl/matrix_rank_kernel_impl.h"
#include "paddle/phi/kernels/math_kernel.h"
31
#include "paddle/phi/kernels/reduce_kernel.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

namespace phi {

template <typename T>
void GesvdjBatched(const phi::GPUContext& dev_ctx,
                   int batchSize,
                   int m,
                   int n,
                   int k,
                   T* A,
                   T* U,
                   T* V,
                   T* S,
                   int* info,
                   int thin_UV = 1);

template <typename T>
void SyevjBatched(const phi::GPUContext& dev_ctx,
                  int batchSize,
                  int n,
                  T* A,
                  T* W,
                  int* info);

template <>
void GesvdjBatched<float>(const phi::GPUContext& dev_ctx,
                          int batchSize,
                          int m,
                          int n,
                          int k,
                          float* A,
                          float* U,
                          float* V,
                          float* S,
                          int* info,
                          int thin_UV) {
  // do not compute singular vectors
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  gesvdjInfo_t gesvdj_params = NULL;
  int lda = m;
  int ldu = m;
  int ldt = n;
  int lwork = 0;
  auto handle = dev_ctx.cusolver_dn_handle();
  PADDLE_ENFORCE_GPU_SUCCESS(
      dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params));
  PADDLE_ENFORCE_GPU_SUCCESS(
      dynload::cusolverDnSgesvdj_bufferSize(handle,
                                            jobz,
                                            thin_UV,
                                            m,
                                            n,
                                            A,
                                            lda,
                                            S,
                                            U,
                                            ldu,
                                            V,
                                            ldt,
                                            &lwork,
                                            gesvdj_params));
  auto workspace = paddle::memory::Alloc(dev_ctx, lwork * sizeof(float));
  float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
  int stride_A = lda * n;
  int stride_U = ldu * (thin_UV ? k : m);
  int stride_V = ldt * (thin_UV ? k : n);
  for (int i = 0; i < batchSize; i++) {
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnSgesvdj(handle,
                                                          jobz,
                                                          thin_UV,
                                                          m,
                                                          n,
                                                          A + stride_A * i,
                                                          lda,
                                                          S + k * i,
                                                          U + stride_U * i,
                                                          ldu,
                                                          V + stride_V * i,
                                                          ldt,
                                                          workspace_ptr,
                                                          lwork,
                                                          info,
                                                          gesvdj_params));
    int error_info;
    paddle::memory::Copy(phi::CPUPlace(),
                         &error_info,
                         dev_ctx.GetPlace(),
                         info,
                         sizeof(int),
                         dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info,
        0,
        phi::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info));
  }
  PADDLE_ENFORCE_GPU_SUCCESS(
      dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params));
}

template <>
void GesvdjBatched<double>(const phi::GPUContext& dev_ctx,
                           int batchSize,
                           int m,
                           int n,
                           int k,
                           double* A,
                           double* U,
                           double* V,
                           double* S,
                           int* info,
                           int thin_UV) {
  // do not compute singular vectors
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  gesvdjInfo_t gesvdj_params = NULL;
  int lda = m;
  int ldu = m;
  int ldt = n;
  int lwork = 0;
  auto handle = dev_ctx.cusolver_dn_handle();
  PADDLE_ENFORCE_GPU_SUCCESS(
      dynload::cusolverDnCreateGesvdjInfo(&gesvdj_params));
  PADDLE_ENFORCE_GPU_SUCCESS(
      dynload::cusolverDnDgesvdj_bufferSize(handle,
                                            jobz,
                                            thin_UV,
                                            m,
                                            n,
                                            A,
                                            lda,
                                            S,
                                            U,
                                            ldu,
                                            V,
                                            ldt,
                                            &lwork,
                                            gesvdj_params));
  auto workspace = paddle::memory::Alloc(dev_ctx, lwork * sizeof(double));
  double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());
  int stride_A = lda * n;
  int stride_U = ldu * (thin_UV ? k : m);
  int stride_V = ldt * (thin_UV ? k : n);
  for (int i = 0; i < batchSize; ++i) {
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnDgesvdj(handle,
                                                          jobz,
                                                          thin_UV,
                                                          m,
                                                          n,
                                                          A + stride_A * i,
                                                          lda,
                                                          S + k * i,
                                                          U + stride_U * i,
                                                          ldu,
                                                          V + stride_V * i,
                                                          ldt,
                                                          workspace_ptr,
                                                          lwork,
                                                          info,
                                                          gesvdj_params));
    // check the error info
    int error_info;
    paddle::memory::Copy(phi::CPUPlace(),
                         &error_info,
                         dev_ctx.GetPlace(),
                         info,
                         sizeof(int),
                         dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info,
        0,
        phi::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver SVD is not zero. [%d]", i, error_info));
  }
  PADDLE_ENFORCE_GPU_SUCCESS(
      dynload::cusolverDnDestroyGesvdjInfo(gesvdj_params));
}

template <>
void SyevjBatched<float>(const phi::GPUContext& dev_ctx,
                         int batchSize,
                         int n,
                         float* A,
                         float* W,
                         int* info) {
  auto handle = dev_ctx.cusolver_dn_handle();
  // Compute eigenvalues only
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  // matrix is saved as column-major in cusolver.
  // numpy and torch use lower triangle to compute eigenvalues, so here use
  // upper triangle
  cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
  int lda = n;
  int stride_A = lda * n;
  int lwork = 0;
  syevjInfo_t params = NULL;
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnCreateSyevjInfo(&params));
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnSsyevj_bufferSize(
      handle, jobz, uplo, n, A, lda, W, &lwork, params));
  auto workspace = paddle::memory::Alloc(dev_ctx, lwork * sizeof(float));
  float* workspace_ptr = reinterpret_cast<float*>(workspace->ptr());
  for (int i = 0; i < batchSize; i++) {
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnSsyevj(handle,
                                                         jobz,
                                                         uplo,
                                                         n,
                                                         A + stride_A * i,
                                                         lda,
                                                         W + n * i,
                                                         workspace_ptr,
                                                         lwork,
                                                         info,
                                                         params));

    int error_info;
    paddle::memory::Copy(phi::CPUPlace(),
                         &error_info,
                         dev_ctx.GetPlace(),
                         info,
                         sizeof(int),
                         dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info,
        0,
        phi::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver eigenvalues is not zero. [%d]",
            i,
            error_info));
  }
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnDestroySyevjInfo(params));
}

template <>
void SyevjBatched<double>(const phi::GPUContext& dev_ctx,
                          int batchSize,
                          int n,
                          double* A,
                          double* W,
                          int* info) {
  auto handle = dev_ctx.cusolver_dn_handle();
  // Compute eigenvalues only
  const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_NOVECTOR;
  //  upper triangle of A is stored
  cublasFillMode_t uplo = CUBLAS_FILL_MODE_UPPER;
  int lda = n;
  int stride_A = lda * n;
  int lwork = 0;
  syevjInfo_t params = NULL;
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnCreateSyevjInfo(&params));
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnDsyevj_bufferSize(
      handle, jobz, uplo, n, A, lda, W, &lwork, params));
  auto workspace = paddle::memory::Alloc(dev_ctx, lwork * sizeof(double));
  double* workspace_ptr = reinterpret_cast<double*>(workspace->ptr());

  for (int i = 0; i < batchSize; i++) {
    PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnDsyevj(handle,
                                                         jobz,
                                                         uplo,
                                                         n,
                                                         A + stride_A * i,
                                                         lda,
                                                         W + n * i,
                                                         workspace_ptr,
                                                         lwork,
                                                         info,
                                                         params));
    int error_info;
    paddle::memory::Copy(phi::CPUPlace(),
                         &error_info,
                         dev_ctx.GetPlace(),
                         info,
                         sizeof(int),
                         dev_ctx.stream());
    PADDLE_ENFORCE_EQ(
        error_info,
        0,
        phi::errors::PreconditionNotMet(
            "For batch [%d]: CUSolver eigenvalues is not zero. [%d]",
            i,
            error_info));
  }
  PADDLE_ENFORCE_GPU_SUCCESS(dynload::cusolverDnDestroySyevjInfo(params));
}

template <typename T, typename Context>
void MatrixRankTolKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& atol_tensor,
                         bool use_default_tol,
                         bool hermitian,
                         DenseTensor* out) {
  auto* x_data = x.data<T>();
  dev_ctx.template Alloc<int64_t>(out);

  auto dim_x = x.dims();
  auto dim_out = out->dims();
  int rows = dim_x[dim_x.size() - 2];
  int cols = dim_x[dim_x.size() - 1];
  int k = std::min(rows, cols);
  auto numel = x.numel();
  int batches = numel / (rows * cols);

  T rtol_T = 0;
  if (use_default_tol) {
    rtol_T = std::numeric_limits<T>::epsilon() * std::max(rows, cols);
  }

  // Must Copy X once, because the gesvdj will destory the content when exit.
  DenseTensor x_tmp;
  paddle::framework::TensorCopy(x, dev_ctx.GetPlace(), &x_tmp);
  auto info = paddle::memory::Alloc(dev_ctx, sizeof(int) * batches);
  int* info_ptr = reinterpret_cast<int*>(info->ptr());

  DenseTensor eigenvalue_tensor;
  eigenvalue_tensor.Resize(detail::GetEigenvalueDim(dim_x, k));
  auto* eigenvalue_data = dev_ctx.template Alloc<T>(&eigenvalue_tensor);

  if (hermitian) {
    SyevjBatched<T>(
        dev_ctx, batches, rows, x_tmp.data<T>(), eigenvalue_data, info_ptr);

    phi::AbsKernel<T, Context>(dev_ctx, eigenvalue_tensor, &eigenvalue_tensor);

  } else {
    DenseTensor U, VH;
    U.Resize(detail::GetUDDim(dim_x, k));
    VH.Resize(detail::GetVHDDim(dim_x, k));
    auto* u_data = dev_ctx.template Alloc<T>(&U);
    auto* vh_data = dev_ctx.template Alloc<T>(&VH);
    GesvdjBatched<T>(dev_ctx,
                     batches,
                     cols,
                     rows,
                     k,
                     x_tmp.data<T>(),
                     vh_data,
                     u_data,
                     eigenvalue_data,
                     info_ptr,
                     1);
  }

  DenseTensor max_eigenvalue_tensor;
  dev_ctx.template Alloc<T>(&max_eigenvalue_tensor);
  max_eigenvalue_tensor.Resize(detail::RemoveLastDim(eigenvalue_tensor.dims()));

  phi::MaxKernel<T, Context>(dev_ctx,
                             eigenvalue_tensor,
                             std::vector<int64_t>{-1},
                             false,
                             &max_eigenvalue_tensor);

  DenseTensor temp_rtol_tensor;
  temp_rtol_tensor =
      phi::Full<T, Context>(dev_ctx, {1}, static_cast<T>(rtol_T));

  DenseTensor rtol_tensor =
      phi::Multiply<T>(dev_ctx, temp_rtol_tensor, max_eigenvalue_tensor);
  DenseTensor tol_tensor;
  tol_tensor.Resize(dim_out);
  dev_ctx.template Alloc<T>(&tol_tensor);

  funcs::ElementwiseCompute<GreaterElementFunctor<T>, T, T>(
      dev_ctx,
      atol_tensor,
      rtol_tensor,
      -1,
      GreaterElementFunctor<T>(),
      &tol_tensor);

  tol_tensor.Resize(detail::NewAxisDim(tol_tensor.dims(), 1));

  DenseTensor compare_result;
  compare_result.Resize(detail::NewAxisDim(dim_out, k));
  dev_ctx.template Alloc<int64_t>(&compare_result);

  int axis = -1;
  funcs::ElementwiseCompute<funcs::GreaterThanFunctor<T, int64_t>, T, int64_t>(
      dev_ctx,
      eigenvalue_tensor,
      tol_tensor,
      axis,
      funcs::GreaterThanFunctor<T, int64_t>(),
      &compare_result);

  phi::SumKernel<int64_t>(dev_ctx,
                          compare_result,
                          std::vector<int64_t>{-1},
                          compare_result.dtype(),
                          false,
                          out);
}

}  // namespace phi

PD_REGISTER_KERNEL(matrix_rank_tol,  // cuda_only
                   GPU,
                   ALL_LAYOUT,
                   phi::MatrixRankTolKernel,
                   float,
                   double) {}

#endif  // not PADDLE_WITH_HIP