interpolate_op.h 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include <string>
14
#include <vector>
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using Tensor = framework::Tensor;

template <typename T>
static void NearestNeighborInterpolate(const Tensor& input, Tensor* output,
                                       const float ratio_h, const float ratio_w,
                                       const int n, const int c,
30 31
                                       const int out_h, const int out_w,
                                       const bool align_corners) {
32 33 34
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
  for (int k = 0; k < out_h; k++) {  // loop for images
35 36
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
37 38

    for (int l = 0; l < out_w; l++) {
39 40
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
41 42 43 44 45 46 47 48 49 50 51 52 53 54

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolation(const Tensor& input, Tensor* output,
                                  const float ratio_h, const float ratio_w,
                                  const int in_h, const int in_w, const int n,
55 56 57
                                  const int c, const int out_h, const int out_w,
                                  const bool align_corners,
                                  const bool align_mode) {
58 59
  auto input_t = EigenTensor<T, 4>::From(input);
  auto output_t = EigenTensor<T, 4>::From(*output);
T
tink2123 已提交
60
  bool align_flag = (align_mode == 0 && !align_corners);
61 62 63 64 65 66 67 68 69 70 71

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int k = 0; k < out_h; k++) {
T
tink2123 已提交
72 73
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
74
    y_n = (y_n > 0) ? y_n : 0;
75
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
T
tink2123 已提交
76 77
    float d_n =
        align_flag ? ratio_h * (k + 0.5) - 0.5 - y_n : ratio_h * k - y_n;
78
    float d_s = 1.f - d_n;
79 80 81 82 83 84 85
    {
      vy_n[k] = y_n;
      vy_s[k] = y_s;
      vd_n[k] = d_n;
      vd_s[k] = d_s;
    }
  }
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (int l = 0; l < out_w; l++) {
    int x_w = (align_mode == 0 && !align_corners)
                  ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                  : static_cast<int>(ratio_w * l);
    x_w = (x_w > 0) ? x_w : 0;
    int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
    float d_w =
        align_flag ? ratio_w * (l + 0.5) - 0.5 - x_w : ratio_w * l - x_w;
    float d_e = 1.f - d_w;
    {
      vx_w[l] = x_w;
      vx_e[l] = x_e;
      vd_w[l] = d_w;
      vd_e[l] = d_e;
    }
  }
112

113 114 115 116 117 118 119
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(4)
#endif
  for (int i = 0; i < n; i++) {          // loop for batches
    for (int j = 0; j < c; j++) {        // loop for channels
      for (int k = 0; k < out_h; k++) {  // loop for images
        for (int l = 0; l < out_w; l++) {
120
          // bilinear interpolation
121 122 123 124 125
          T out_t = input_t(i, j, vy_n[k], vx_w[l]) * vd_s[k] * vd_e[l] +
                    input_t(i, j, vy_s[k], vx_w[l]) * vd_n[k] * vd_e[l] +
                    input_t(i, j, vy_n[k], vx_e[l]) * vd_s[k] * vd_w[l] +
                    input_t(i, j, vy_s[k], vx_e[l]) * vd_n[k] * vd_w[l];
          output_t(i, j, k, l) = out_t;
126 127 128 129 130 131 132
        }
      }
    }
  }
}

template <typename T>
133 134 135 136
static void NearestNeighborInterpolateGrad(
    const Tensor& output_grad, Tensor* input_grad, const float ratio_h,
    const float ratio_w, const int n, const int c, const int out_h,
    const int out_w, const bool align_corners) {
137 138
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
139

140
  for (int k = 0; k < out_h; k++) {  // loop for images
141 142
    int in_k = (align_corners) ? static_cast<int>(ratio_h * k + 0.5)
                               : static_cast<int>(ratio_h * k);
143 144

    for (int l = 0; l < out_w; l++) {
145 146
      int in_l = (align_corners) ? static_cast<int>(ratio_w * l + 0.5)
                                 : static_cast<int>(ratio_w * l);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
        }
      }
    }
  }
}

template <typename T>
static void BilinearInterpolationGrad(const Tensor& output_grad,
                                      Tensor* input_grad, const float ratio_h,
                                      const float ratio_w, const int in_h,
                                      const int in_w, const int n, const int c,
162 163 164
                                      const int out_h, const int out_w,
                                      const bool align_corners,
                                      const int align_mode) {
165 166
  auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
  auto output_grad_t = EigenTensor<T, 4>::From(output_grad);
T
tink2123 已提交
167
  bool align_flag = (align_mode == 0 && !align_corners);
168
  for (int k = 0; k < out_h; k++) {  // loop for images
T
tink2123 已提交
169 170
    int y_n = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                         : static_cast<int>(ratio_h * k);
T
tink2123 已提交
171
    y_n = (y_n > 0) ? y_n : 0;
172
    int y_s = (y_n + 1) < (in_h - 1) ? (y_n + 1) : (in_h - 1);
T
tink2123 已提交
173 174
    float d_n =
        align_flag ? ratio_h * (k + 0.5) - 0.5 - y_n : ratio_h * k - y_n;
175 176 177
    float d_s = 1.f - d_n;

    for (int l = 0; l < out_w; l++) {
T
tink2123 已提交
178 179
      int x_w = align_flag ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                           : static_cast<int>(ratio_w * l);
T
tink2123 已提交
180
      x_w = (x_w > 0) ? x_w : 0;
181
      int x_e = (x_w + 1) < (in_w - 1) ? (x_w + 1) : (in_w - 1);
T
tink2123 已提交
182 183
      float d_w =
          align_flag ? ratio_w * (l + 0.5) - 0.5 - x_w : ratio_w * l - x_w;
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
      float d_e = 1.f - d_w;

      for (int i = 0; i < n; i++) {    // loop for batches
        for (int j = 0; j < c; j++) {  // loop for channels
          // bilinear interpolation grad
          const T grad = output_grad_t(i, j, k, l);
          input_grad_t(i, j, y_n, x_w) += static_cast<T>(grad * d_s * d_e);
          input_grad_t(i, j, y_s, x_w) += static_cast<T>(grad * d_n * d_e);
          input_grad_t(i, j, y_n, x_e) += static_cast<T>(grad * d_s * d_w);
          input_grad_t(i, j, y_s, x_e) += static_cast<T>(grad * d_n * d_w);
        }
      }
    }
  }
}
template <typename T>
class InterpolateKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");

D
dengkaipeng 已提交
206 207 208 209 210
    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

211 212 213
    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
D
dengkaipeng 已提交
214 215 216

    float scale = ctx.Attr<float>("scale");
    if (scale > 0) {
D
dengkaipeng 已提交
217 218
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
D
dengkaipeng 已提交
219 220
    }

221 222 223 224 225 226
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
227 228
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
229 230 231 232 233 234 235 236 237 238 239 240

    output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, output, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*input, ctx.GetPlace(), output);
      return;
    }

T
tink2123 已提交
241 242 243 244 245 246 247 248
    float ratio_h = 0.f;
    float ratio_w = 0.f;

    if (out_h > 1) {
      ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                                : static_cast<float>(in_h) / out_h;
    }
    if (out_w > 1) {
T
tink2123 已提交
249 250
      ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                                : static_cast<float>(in_w) / out_w;
T
tink2123 已提交
251
    }
252 253 254

    if ("bilinear" == interp_method) {
      BilinearInterpolation<T>(*input, output, ratio_h, ratio_w, in_h, in_w, n,
255
                               c, out_h, out_w, align_corners, align_mode);
256 257
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolate<T>(*input, output, ratio_h, ratio_w, n, c,
258
                                    out_h, out_w, align_corners);
259 260 261 262 263 264 265 266 267 268 269 270
    }
  }
};

template <typename T>
class InterpolateGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("X");
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));

D
dengkaipeng 已提交
271 272 273 274 275
    const int n = input->dims()[0];
    const int c = input->dims()[1];
    const int in_h = input->dims()[2];
    const int in_w = input->dims()[3];

276 277 278
    std::string interp_method = ctx.Attr<std::string>("interp_method");
    int out_h = ctx.Attr<int>("out_h");
    int out_w = ctx.Attr<int>("out_w");
D
dengkaipeng 已提交
279 280 281

    float scale = ctx.Attr<float>("scale");
    if (scale > 0) {
D
dengkaipeng 已提交
282 283
      out_h = static_cast<int>(in_h * scale);
      out_w = static_cast<int>(in_w * scale);
D
dengkaipeng 已提交
284 285
    }

286 287 288 289 290 291
    auto out_size = ctx.Input<Tensor>("OutSize");
    if (out_size != nullptr) {
      auto out_size_data = out_size->data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
D
dengkaipeng 已提交
292

293 294
    bool align_corners = ctx.Attr<bool>("align_corners");
    int align_mode = ctx.Attr<int>("align_mode");
295 296 297 298 299 300 301 302 303 304 305 306

    input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
    auto& device_ctx =
        ctx.template device_context<platform::CPUDeviceContext>();
    math::SetConstant<platform::CPUDeviceContext, T> zero;
    zero(device_ctx, input_grad, static_cast<T>(0.0));

    if (in_h == out_h && in_w == out_w) {
      framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
      return;
    }

T
tink2123 已提交
307 308 309 310 311 312 313 314
    float ratio_h = 0.f;
    float ratio_w = 0.f;

    if (out_h > 1) {
      ratio_h = (align_corners) ? static_cast<float>(in_h - 1) / (out_h - 1)
                                : static_cast<float>(in_h) / out_h;
    }
    if (out_w > 1) {
T
tink2123 已提交
315 316
      ratio_w = (align_corners) ? static_cast<float>(in_w - 1) / (out_w - 1)
                                : static_cast<float>(in_w) / out_w;
T
tink2123 已提交
317
    }
318 319 320

    if ("bilinear" == interp_method) {
      BilinearInterpolationGrad<T>(*output_grad, input_grad, ratio_h, ratio_w,
321 322
                                   in_h, in_w, n, c, out_h, out_w,
                                   align_corners, align_mode);
323 324
    } else if ("nearest" == interp_method) {
      NearestNeighborInterpolateGrad<T>(*output_grad, input_grad, ratio_h,
325 326
                                        ratio_w, n, c, out_h, out_w,
                                        align_corners);
327 328 329 330 331 332
    }
  }
};

}  // namespace operators
}  // namespace paddle