GradientMachine.cpp 2.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "GradientMachine.h"

#include <fstream>
Y
Yu Yang 已提交
18
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
19

Y
Yu Yang 已提交
20
#include "GradientMachineMode.h"
Z
zhangjinchao01 已提交
21 22
#include "MultiGradientMachine.h"
#include "MultiNetwork.h"
Y
Yu Yang 已提交
23 24 25
#include "NeuralNetwork.h"
#include "ParallelNeuralNetwork.h"
#include "hl_gpu.h"
Z
zhangjinchao01 已提交
26 27 28 29

namespace paddle {

GradientMachine* GradientMachine::create(
30 31
    const ModelConfig& config,
    int mode,
Z
zhangjinchao01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    const std::vector<ParameterType>& parameterTypes) {
  if (auto gm = IGradientMachineMode::tryCreateGradientMachine(mode, config)) {
    return gm;
  }
  if (FLAGS_trainer_count > 1) {
    return new MultiGradientMachine(config, FLAGS_use_gpu);
  }
  if (FLAGS_trainer_count == 1) {  // single
    NeuralNetwork* nn;
    if (config.type() == "multi_nn") {
      /* multi submodel calculate, thread(s) will be initialized inside */
      nn = new MultiNetwork("root");
    } else if (FLAGS_parallel_nn) {
      /* multi threads calculate */
      nn = new ParallelNeuralNetwork();
    } else {
      /* single thread calculate */
      nn = NeuralNetwork::create(config);
    }
51 52 53 54 55
    ParamInitCallback testParamInitCb = [](int paramId, Parameter* para) {
      para->enableType(PARAMETER_VALUE);
    };
    nn->init(
        config, mode == kTesting ? testParamInitCb : nullptr, parameterTypes);
Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    return nn;
  }
  LOG(FATAL) << "Unknown model type: " << config.type();
  return nullptr;
}

void GradientMachine::saveParameters(const std::string& dir) const {
  LOG(INFO) << "Saving parameters to " << dir;

  for (auto& para : parameters_) {
    std::string filename = dir + "/" + para->getName();
    if (para->isFullSize()) {
      para->save(filename);
    }
  }
}

void GradientMachine::loadParameters(const std::string& dir) {
  LOG(INFO) << "Loading parameters from " << dir;

  for (auto& para : parameters_) {
    std::string filename = dir + "/" + para->getName();
    if (para->isFullSize()) {
      para->load(filename);
    }
  }
}

void GradientMachine::randParameters() {
  LOG(INFO) << "Initing parameters..";

  for (auto& para : parameters_) {
    if (para->isFullSize()) {
      para->randomize();
    }
  }
  LOG(INFO) << "Init parameters done.";
}

}  // namespace paddle