where_index_op.h 2.9 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <functional>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
27
struct WhereIndexFunctor {
28 29
  WhereIndexFunctor(const T* true_index, int true_num, const T* stride,
                    int rank, T* out)
Z
zhoukunsheng 已提交
30 31 32 33 34 35 36
      : true_index_(true_index),
        true_num_(true_num),
        stride_(stride),
        rank_(rank),
        out_ptr_(out) {}

  HOSTDEVICE void operator()(size_t idx) const {
37
    T index = true_index_[idx];
Z
zhoukunsheng 已提交
38 39 40 41 42 43
    for (int j = 0; j < rank_; j++) {
      out_ptr_[idx * rank_ + j] = index / stride_[j];
      index -= out_ptr_[idx * rank_ + j] * stride_[j];
    }
  }

44
  const T* true_index_;
Z
zhoukunsheng 已提交
45
  int true_num_;
46
  const T* stride_;
Z
zhoukunsheng 已提交
47
  int rank_;
48
  T* out_ptr_;
Z
zhoukunsheng 已提交
49 50 51 52 53
};

using CPUDeviceContext = paddle::platform::CPUDeviceContext;

template <typename T>
54
class CPUWhereIndexKernel : public framework::OpKernel<T> {
Z
zhoukunsheng 已提交
55 56 57 58 59
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* condition = context.Input<framework::Tensor>("Condition");
    auto* out = context.Output<framework::Tensor>("Out");

60
    const T* cond_data = condition->data<T>();
Z
zhoukunsheng 已提交
61 62 63 64
    auto numel = condition->numel();
    auto dims = condition->dims();
    const int rank = dims.size();

65
    std::vector<int64_t> true_index;
Z
zhoukunsheng 已提交
66
    for (auto i = 0; i < numel; i++) {
67
      if (static_cast<bool>(cond_data[i])) {
Z
zhoukunsheng 已提交
68 69 70 71 72 73
        true_index.push_back(i);
      }
    }
    auto true_num = true_index.size();

    out->Resize(framework::make_ddim({static_cast<int64_t>(true_num), rank}));
74
    auto out_ptr = out->mutable_data<int64_t>(context.GetPlace());
Z
zhoukunsheng 已提交
75 76 77 78 79

    if (true_num == 0) {
      return;
    }

80
    std::vector<int64_t> stride(rank);
Z
zhoukunsheng 已提交
81 82 83 84 85 86
    stride[rank - 1] = 1;
    for (int i = rank - 2; i >= 0; i--) {
      stride[i] = stride[i + 1] * dims[i + 1];
    }

    auto& dev_ctx = context.template device_context<CPUDeviceContext>();
87 88
    WhereIndexFunctor<int64_t> functor(true_index.data(), true_num,
                                       stride.data(), rank, out_ptr);
Z
zhoukunsheng 已提交
89 90 91 92 93 94 95
    platform::ForRange<CPUDeviceContext> for_range(dev_ctx, true_num);
    for_range(functor);
  }
};

}  // namespace operators
}  // namespace paddle