paddle_analysis_config.h 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51
///
52
/// \brief configuration manager for AnalysisPredictor.
53 54
/// \since 1.7.0
///
55
/// AnalysisConfig manages configurations of AnalysisPredictor.
56 57 58 59 60
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
61 62
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
63
///
64
struct PD_INFER_DECL AnalysisConfig {
65
  AnalysisConfig() = default;
66
  ///
67 68
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
69
  ///
70
  /// \param[in] other another AnalysisConfig
71
  ///
72
  explicit AnalysisConfig(const AnalysisConfig& other);
73
  ///
74
  /// \brief Construct a new AnalysisConfig from a no-combined model.
75 76 77
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
78
  explicit AnalysisConfig(const std::string& model_dir);
79
  ///
80
  /// \brief Construct a new AnalysisConfig from a combined model.
81 82 83 84
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
85 86
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
87 88 89
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
90
  enum class Precision {
91 92 93
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
N
nhzlx 已提交
94
  };
95

96 97 98 99 100
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
101
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
102 103 104 105 106 107 108 109

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
110 111
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
112 113 114 115 116
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
117
  void SetProgFile(const std::string& x) { prog_file_ = x; }
118 119 120 121 122
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
123
  void SetParamsFile(const std::string& x) { params_file_ = x; }
124 125 126 127 128 129

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
130 131 132
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
133 134 135 136 137
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
138
  const std::string& model_dir() const { return model_dir_; }
139 140 141 142 143
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
144
  const std::string& prog_file() const { return prog_file_; }
145 146 147 148 149
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
150 151
  const std::string& params_file() const { return params_file_; }

152
  // Padding related.
153 154 155 156 157

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
158
  void DisableFCPadding();
159 160 161 162 163
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
164 165
  bool use_fc_padding() const { return use_fc_padding_; }

166
  // GPU related.
167

168 169 170 171 172 173
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
174
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
175 176 177 178
  ///
  /// \brief Turn off GPU.
  ///
  ///
179
  void DisableGpu();
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
201 202 203 204
  void EnableXpu(int l3_workspace_size = 0xfffc00, bool locked = false,
                 bool autotune = true, const std::string& autotune_file = "",
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
205
  ///
W
Wilber 已提交
206 207 208 209 210 211
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
212 213 214 215
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
216
  bool use_gpu() const { return use_gpu_; }
217
  ///
218 219 220 221 222 223
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
224 225 226 227 228 229
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
  ///
230 231 232 233 234 235
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
236
  /// \brief Get the XPU device id.
237
  ///
238
  /// \return int The XPU device id.
239
  ///
240
  int xpu_device_id() const { return xpu_device_id_; }
241
  ///
W
Wilber 已提交
242 243 244 245 246 247
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
  ///
248 249 250 251
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
252
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
253 254 255 256 257 258
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
259
  float fraction_of_gpu_memory_for_pool() const;
260

261 262 263 264 265
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
266
  void EnableCUDNN();
267 268 269 270 271
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
272 273
  bool cudnn_enabled() const { return use_cudnn_; }

274 275 276 277 278 279
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
280
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
281 282 283 284 285 286
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
287
  bool ir_optim() const { return enable_ir_optim_; }
288

289 290 291 292 293 294 295
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
296
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
297 298 299 300 301 302
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
303
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
304

305 306 307 308 309 310 311 312 313 314 315
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
316
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
317 318 319 320 321 322 323
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
324
  bool specify_input_name() const { return specify_input_name_; }
325

326 327 328 329 330 331 332 333 334 335
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
336
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
337 338 339 340 341 342 343 344
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
345 346 347 348 349
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
350 351 352 353 354
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
355
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
356
  ///
357 358 359 360 361 362
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
363 364 365 366 367 368 369
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
370 371 372 373 374
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
375 376 377 378 379 380
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
381
    return !min_input_shape_.empty();
382
  }
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

427 428 429 430 431 432
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

433 434
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
435 436 437
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
438 439
  ///
  void EnableTensorRtOSS();
440

441 442 443 444 445 446 447
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
  bool tensorrt_oss_enabled() { return trt_use_oss_; }

448 449 450 451 452 453 454 455 456 457 458 459 460 461
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

D
denglin-github 已提交
462 463 464
  void EnableDlnne(int min_subgraph_size = 3);
  bool dlnne_enabled() const { return use_dlnne_; }

465 466 467 468 469 470 471
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
472 473
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
474
      bool zero_copy = false,
石晓伟 已提交
475 476 477
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

478 479 480 481 482 483
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
484 485
  bool lite_engine_enabled() const { return use_lite_; }

486 487 488 489 490 491 492
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
493
  void SwitchIrDebug(int x = true);
494

495 496 497 498
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
499
  void EnableMKLDNN();
500 501 502
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
503 504
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
505 506 507
  ///
  /// \param capacity The cache capacity.
  ///
508
  void SetMkldnnCacheCapacity(int capacity);
509 510 511 512 513
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
514 515
  bool mkldnn_enabled() const { return use_mkldnn_; }

516 517 518 519 520 521
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
522
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
523 524 525 526 527 528
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
529 530 531 532
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

533 534 535 536 537
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
538
  NativeConfig ToNativeConfig() const;
539 540 541 542 543
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
544 545 546
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
547

548 549 550 551
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
552 553
  void EnableMkldnnQuantizer();

554 555 556 557 558 559 560 561 562 563 564 565 566
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

567 568 569 570 571 572 573 574
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

575 576 577 578 579 580 581 582
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

583 584 585 586 587
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
588 589
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

590 591 592 593 594
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
595
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
596

597 598 599 600 601 602 603 604 605
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
T
Tao Luo 已提交
606
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
607
                      const char* params_buffer, size_t params_buffer_size);
608 609 610 611 612 613
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
614
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
615

616 617 618 619
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
620 621 622
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
623 624 625 626 627 628
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
629
  bool enable_memory_optim() const;
630

631 632 633 634
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
635
  void EnableProfile();
636 637 638 639 640
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
641 642
  bool profile_enabled() const { return with_profile_; }

643 644 645
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
646
  void DisableGlogInfo();
647 648 649 650 651
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
652 653
  bool glog_info_disabled() const { return !with_glog_info_; }

654 655 656 657 658
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
659
  void SetInValid() const { is_valid_ = false; }
660 661 662 663 664
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
665
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
666

667 668
  friend class ::paddle::AnalysisPredictor;

669 670 671 672 673
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
674
  PassStrategy* pass_builder() const;
675 676 677 678 679 680 681

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
682
  void PartiallyRelease();
683

684 685 686 687 688
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

689 690 691 692 693 694
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

695
 protected:
696 697
  // Model pathes.
  std::string model_dir_;
698 699
  mutable std::string prog_file_;
  mutable std::string params_file_;
700

S
Sylwester Fraczek 已提交
701
  // GPU related.
702
  bool use_gpu_{false};
703
  int gpu_device_id_{0};
704
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
705
  bool thread_local_stream_{false};
706

707 708
  bool use_cudnn_{false};

W
Wilber 已提交
709 710 711 712
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

713 714 715
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
716
  // TensorRT related.
717
  bool use_tensorrt_{false};
718 719
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
720
  int tensorrt_workspace_size_{1 << 30};
721 722 723 724
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
725
  int tensorrt_max_batchsize_{1};
726 727 728 729 730
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
731 732 733
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
734
  bool trt_use_oss_{false};
735 736
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
737 738 739
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
740
  std::vector<std::string> trt_disabled_ops_{};
741
  bool disable_trt_plugin_fp16_{false};
742 743 744 745 746 747 748 749 750
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
751

D
denglin-github 已提交
752 753 754 755
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};

Y
Yan Chunwei 已提交
756 757 758
  // memory reuse related.
  bool enable_memory_optim_{false};

759 760 761
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
762
  bool model_from_memory_{false};
763

764 765 766 767 768 769 770 771
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

772 773
  bool with_profile_{false};

774 775
  bool with_glog_info_{true};

776 777 778 779
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
780

石晓伟 已提交
781 782 783 784
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
785
  bool lite_zero_copy_;
石晓伟 已提交
786

W
Wilber 已提交
787
  // XPU related.
788
  bool use_xpu_{false};
W
Wilber 已提交
789
  int xpu_device_id_{0};
790
  int xpu_l3_workspace_size_;
W
Wilber 已提交
791 792 793 794 795
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
796

797
  // mkldnn related.
W
Wilber 已提交
798
  int mkldnn_cache_capacity_{10};
799 800
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
801
  bool use_mkldnn_bfloat16_{false};
802
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
803

804 805 806 807
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
808 809
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
810 811 812
};

}  // namespace paddle