vgg16_fluid.py 10.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2
#
T
typhoonzero 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
fengjiayi 已提交
6
#
T
typhoonzero 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
fengjiayi 已提交
8
#
T
typhoonzero 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
Xin Pan 已提交
14
"""VGG16 benchmark in Fluid"""
T
typhoonzero 已提交
15 16 17 18 19 20
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
T
typhoonzero 已提交
24 25 26
import argparse
import functools
import os
27
from paddle.fluid import debuger
T
typhoonzero 已提交
28

T
typhoonzero 已提交
29

T
typhoonzero 已提交
30 31 32 33 34 35 36 37
def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

T
typhoonzero 已提交
38

T
typhoonzero 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
T
typhoonzero 已提交
54
parser.add_argument('--device_id', type=int, default=0, help="The device id.")
T
typhoonzero 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')
G
gongweibao 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

parser.add_argument(
    "--ps_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")
parser.add_argument(
    "--trainer_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")

# Flags for defining the tf.train.Server
parser.add_argument(
    "--task_index", type=int, default=0, help="Index of task within the job")
T
typhoonzero 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
110
    fc1 = fluid.layers.fc(input=drop, size=4096, act=None)
T
typhoonzero 已提交
111 112
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
113
    fc2 = fluid.layers.fc(input=drop2, size=4096, act=None)
T
typhoonzero 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
F
fengjiayi 已提交
142 143 144
    batch_size = fluid.layers.create_tensor(dtype='int64')
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size)
T
typhoonzero 已提交
145 146 147 148

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
F
fengjiayi 已提交
149
        inference_program = fluid.io.get_inference_program(batch_acc)
T
typhoonzero 已提交
150 151 152 153 154 155

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    # Initialize executor
T
typhoonzero 已提交
156 157
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(
        args.device_id)
T
typhoonzero 已提交
158 159 160 161
    exe = fluid.Executor(place)

    # test
    def test(exe):
F
fengjiayi 已提交
162
        test_pass_acc = fluid.average.WeightedAverage()
T
typhoonzero 已提交
163 164 165 166 167 168
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

F
fengjiayi 已提交
169 170 171 172 173
            outs = exe.run(inference_program,
                           feed={"pixel": img_data,
                                 "label": y_data},
                           fetch_list=[batch_acc, batch_size])
            test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
T
typhoonzero 已提交
174

F
fengjiayi 已提交
175
        return test_pass_acc.eval()
T
typhoonzero 已提交
176 177 178

    def train_loop(exe, trainer_prog):
        iters = 0
T
typhoonzero 已提交
179
        ts = time.time()
F
fengjiayi 已提交
180
        train_pass_acc = fluid.average.WeightedAverage()
T
typhoonzero 已提交
181 182 183 184
        for pass_id in range(args.num_passes):
            # train
            start_time = time.time()
            num_samples = 0
F
fengjiayi 已提交
185
            train_pass_acc.reset()
186 187 188 189 190 191 192
            for batch_id, data in enumerate(train_reader()):
                ts = time.time()
                img_data = np.array(
                    map(lambda x: x[0].reshape(data_shape), data)).astype(
                        "float32")
                y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                y_data = y_data.reshape([-1, 1])
T
typhoonzero 已提交
193

194 195 196 197 198 199 200 201 202
                loss, acc, b_size = exe.run(
                    trainer_prog,
                    feed={"pixel": img_data,
                          "label": y_data},
                    fetch_list=[avg_cost, batch_acc, batch_size])
                iters += 1
                num_samples += len(data)
                train_pass_acc.add(value=acc, weight=b_size)
                print(
X
Xin Pan 已提交
203 204 205 206
                    "Task:%d Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, "
                    "Speed = %.2f img/s " % (args.task_index, pass_id, iters,
                                             loss, acc,
                                             len(data) / (time.time() - ts))
207
                )  # The accuracy is the accumulation of batches, but not the current batch.
T
typhoonzero 已提交
208 209

            pass_elapsed = time.time() - start_time
F
fengjiayi 已提交
210
            pass_train_acc = train_pass_acc.eval()
T
typhoonzero 已提交
211
            pass_test_acc = test(exe)
X
Xin Pan 已提交
212 213 214 215
            print("Task:%d Pass = %d, Training performance = %f imgs/s, "
                  "Train accuracy = %f, Test accuracy = %f\n" %
                  (args.task_index, pass_id, num_samples / pass_elapsed,
                   pass_train_acc, pass_test_acc))
T
typhoonzero 已提交
216 217 218 219 220 221 222 223

    if args.local:
        # Parameter initialization
        exe.run(fluid.default_startup_program())

        # data reader
        train_reader = paddle.batch(
            paddle.reader.shuffle(
T
typhoonzero 已提交
224 225
                paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
226 227 228 229 230 231 232 233 234
                buf_size=5120),
            batch_size=args.batch_size)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            batch_size=args.batch_size)
        train_loop(exe, fluid.default_main_program())
    else:
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
T
typhoonzero 已提交
235
        print("trainers total: ", trainers)
G
gongweibao 已提交
236

T
typhoonzero 已提交
237 238 239
        training_role = os.getenv(
            "TRAINING_ROLE",
            "TRAINER")  # get the training role: trainer/pserver
G
gongweibao 已提交
240

T
typhoonzero 已提交
241 242
        t = fluid.DistributeTranspiler()
        t.transpile(
T
typhoonzero 已提交
243 244
            optimize_ops,
            params_grads,
G
gongweibao 已提交
245 246
            trainer_id=args.task_index,
            pservers=args.ps_hosts,
T
typhoonzero 已提交
247
            trainers=trainers)
T
typhoonzero 已提交
248 249

        if training_role == "PSERVER":
G
gongweibao 已提交
250 251
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_INIT_PORT")
T
typhoonzero 已提交
252 253 254 255
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
256 257
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
T
typhoonzero 已提交
258 259 260 261 262 263 264 265 266
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

            # data reader
            train_reader = paddle.batch(
                paddle.reader.shuffle(
T
typhoonzero 已提交
267 268
                    paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                    else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
269 270 271
                    buf_size=5120),
                batch_size=args.batch_size)
            test_reader = paddle.batch(
T
typhoonzero 已提交
272 273
                paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else
                paddle.dataset.flowers.test(),
T
typhoonzero 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
            # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
            exe.run(fluid.default_startup_program())
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()