leaky_relu_op.cc 5.3 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

H
hjchen2 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
namespace paddle {
namespace inference {
namespace tensorrt {

// LeakyRelu converter from fluid to tensorRT
class LeakyReluOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    VLOG(4) << "convert fluid leaky_relu op to tensorrt layer";

    framework::OpDesc op_desc(op, nullptr);
    auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
    // Get attrs
41
    float alpha = BOOST_GET_CONST(float, op_desc.GetAttr("alpha"));
42
    nvinfer1::ILayer* output_layer = nullptr;
H
hjchen2 已提交
43

44 45 46 47 48
#if IS_TRT_VERSION_GE(5100)
    nvinfer1::IActivationLayer* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Activation, *input, nvinfer1::ActivationType::kLEAKY_RELU);
    layer->setAlpha(alpha);
    output_layer = layer;
49

50
    bool enable_int8 = op_desc.HasAttr("enable_int8");
51 52
    if (enable_int8) {
      CHECK(op_desc.HasAttr("X_scale"));
53
      float in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
54 55
      engine_->SetTensorDynamicRange(input, in_scale);
    }
56
#else
H
hjchen2 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    platform::CPUPlace place;
    std::unique_ptr<framework::LoDTensor> alpha_tensor(
        new framework::LoDTensor());
    alpha_tensor->Resize(framework::make_ddim({2}));
    float* alpha_data = alpha_tensor->mutable_data<float>(place);
    alpha_data[0] = alpha;
    alpha_data[1] = 1.f - alpha;
    // the leaky relu formula y = (x > 0) ? x : alpha * x is equal to
    // y = alpha * x + (x > 0) ? (1 - alpha) * x : 0
    TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT, &alpha_data[0], 1};
    TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0};
    TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0};
    // y_scale = alpha * x
    auto* scale_layer = TRT_ENGINE_ADD_LAYER(
        engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM, shift.get(),
        scale.get(), power.get());
73 74 75 76
    PADDLE_ENFORCE_NOT_NULL(
        scale_layer, platform::errors::InvalidArgument(
                         "Invalid scale layer in leaky_relu TRT op converter. "
                         "The scale layer should not be null."));
H
hjchen2 已提交
77 78 79
    // y_relu = (x > 0) : x : 0
    auto* relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Activation, *input,
                                            nvinfer1::ActivationType::kRELU);
80 81 82 83
    PADDLE_ENFORCE_NOT_NULL(
        relu_layer, platform::errors::InvalidArgument(
                        "Invalid relu layer in leaky_relu TRT op converter. "
                        "The relu layer should not be null."));
H
hjchen2 已提交
84 85 86 87 88 89 90
    //
    TensorRTEngine::Weight sub_scale{nvinfer1::DataType::kFLOAT, &alpha_data[1],
                                     1};
    auto* scale_relu_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Scale, *(relu_layer->getOutput(0)),
                             nvinfer1::ScaleMode::kUNIFORM, shift.get(),
                             sub_scale.get(), power.get());
91 92 93 94 95
    PADDLE_ENFORCE_NOT_NULL(
        scale_relu_layer,
        platform::errors::InvalidArgument(
            "Invalid scale_relu layer in leaky_relu TRT op converter. The "
            "scale_relu layer should not be null."));
96
    output_layer =
H
hjchen2 已提交
97 98 99
        TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *(scale_layer->getOutput(0)),
                             *(scale_relu_layer->getOutput(0)),
                             nvinfer1::ElementWiseOperation::kSUM);
100 101 102 103
    PADDLE_ENFORCE_NOT_NULL(
        output_layer, platform::errors::InvalidArgument(
                          "Invalid output layer in leaky_relu TRT op "
                          "converter. The output layer should not be null."));
H
hjchen2 已提交
104
    // keep alpha tensor to avoid release it's memory
H
hjchen2 已提交
105
    std::string alpha_name = op_desc.Output("Out")[0] + "_alpha";
106 107 108 109 110 111 112 113
    bool alpha_not_in_weight_map =
        (engine_->weight_map.find(alpha_name) == engine_->weight_map.end());
    PADDLE_ENFORCE_EQ(alpha_not_in_weight_map, true,
                      platform::errors::InvalidArgument(
                          "The name of parameter alpha in leaky_relu TRT op "
                          "converter is already "
                          "found in the weight map. The same weight cannot be "
                          "set twice. Please check if it is already set."));
114
    engine_->SetWeights(alpha_name, std::move(alpha_tensor));
115
#endif
H
hjchen2 已提交
116
    auto output_name = op_desc.Output("Out")[0];
117 118
    RreplenishLayerAndOutput(output_layer, "leaky_relu", {output_name},
                             test_mode);
H
hjchen2 已提交
119 120 121 122 123 124 125 126
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

REGISTER_TRT_OP_CONVERTER(leaky_relu, LeakyReluOpConverter);