test_imperative_se_resnext.py 17.2 KB
Newer Older
Y
Yan Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.layer_helper import LayerHelper
24
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
Y
Yan Xu 已提交
25 26 27
from paddle.fluid.dygraph.base import to_variable
from test_imperative_base import new_program_scope

28 29 30
if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})

Y
Yan Xu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
batch_size = 8
train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": batch_size,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    },
    "batch_size": batch_size,
    "lr": 0.1,
    "total_images": 6149,
}


48
def optimizer_setting(params, parameter_list=None):
Y
Yan Xu 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 6149
        else:
            total_images = params["total_images"]
        # TODO(Yancey1989): using lr decay if it is ready.
        #batch_size = ls["batch_size"]
        #step = int(total_images / batch_size + 1)

        #bd = [step * e for e in ls["epochs"]]
        #base_lr = params["lr"]
        #lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
62 63 64 65 66
        if fluid.in_dygraph_mode():
            optimizer = fluid.optimizer.SGD(learning_rate=0.01,
                                            parameter_list=parameter_list)
        else:
            optimizer = fluid.optimizer.SGD(learning_rate=0.01)
Y
Yan Xu 已提交
67 68 69 70 71 72

    return optimizer


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
73
                 num_channels,
Y
Yan Xu 已提交
74 75 76 77 78
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
79
        super(ConvBNLayer, self).__init__()
Y
Yan Xu 已提交
80 81

        self._conv = Conv2D(
82
            num_channels=num_channels,
Y
Yan Xu 已提交
83 84 85 86 87 88 89 90
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

91
        self._batch_norm = BatchNorm(num_filters, act=act)
Y
Yan Xu 已提交
92 93 94 95 96 97 98 99 100

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class SqueezeExcitation(fluid.dygraph.Layer):
101
    def __init__(self, num_channels, reduction_ratio):
Y
Yan Xu 已提交
102

103 104
        super(SqueezeExcitation, self).__init__()
        self._num_channels = num_channels
105
        self._pool = Pool2D(pool_size=0, pool_type='avg', global_pooling=True)
106 107 108
        self._squeeze = Linear(
            num_channels,
            num_channels // reduction_ratio,
Y
Yan Xu 已提交
109 110 111
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
            act='relu')
112 113 114
        self._excitation = Linear(
            num_channels // reduction_ratio,
            num_channels,
Y
Yan Xu 已提交
115 116
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.05)),
Y
Yan Xu 已提交
117
            act='sigmoid')
Y
Yan Xu 已提交
118 119 120

    def forward(self, input):
        y = self._pool(input)
121
        y = fluid.layers.reshape(y, shape=[-1, self._num_channels])
Y
Yan Xu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135
        y = self._squeeze(y)
        y = self._excitation(y)
        y = fluid.layers.elementwise_mul(x=input, y=y, axis=0)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 cardinality,
                 reduction_ratio,
                 shortcut=True):
136
        super(BottleneckBlock, self).__init__()
Y
Yan Xu 已提交
137 138

        self.conv0 = ConvBNLayer(
139
            num_channels=num_channels, num_filters=num_filters, filter_size=1)
Y
Yan Xu 已提交
140
        self.conv1 = ConvBNLayer(
141
            num_channels=num_filters,
Y
Yan Xu 已提交
142 143 144 145 146
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            groups=cardinality)
        self.conv2 = ConvBNLayer(
147
            num_channels=num_filters,
Y
Yan Xu 已提交
148 149 150 151 152
            num_filters=num_filters * 4,
            filter_size=1,
            act='relu')

        self.scale = SqueezeExcitation(
153
            num_channels=num_filters * 4, reduction_ratio=reduction_ratio)
Y
Yan Xu 已提交
154 155 156

        if not shortcut:
            self.short = ConvBNLayer(
157
                num_channels=num_channels,
Y
Yan Xu 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                num_filters=num_filters * 4,
                filter_size=1,
                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=scale)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        y = layer_helper.append_activation(y)
        return y


class SeResNeXt(fluid.dygraph.Layer):
185 186
    def __init__(self, layers=50, class_dim=102):
        super(SeResNeXt, self).__init__()
Y
Yan Xu 已提交
187 188 189 190 191 192 193 194 195 196 197 198

        self.layers = layers
        supported_layers = [50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 6, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
199
                num_channels=3,
Y
Yan Xu 已提交
200 201 202 203 204
                num_filters=64,
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
205
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
206 207 208 209 210 211
        elif layers == 101:
            cardinality = 32
            reduction_ratio = 16
            depth = [3, 4, 23, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
212
                num_channels=3,
213
                num_filters=64,
Y
Yan Xu 已提交
214 215 216 217
                filter_size=7,
                stride=2,
                act='relu')
            self.pool = Pool2D(
218
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
219 220 221 222 223 224
        elif layers == 152:
            cardinality = 64
            reduction_ratio = 16
            depth = [3, 8, 36, 3]
            num_filters = [128, 256, 512, 1024]
            self.conv0 = ConvBNLayer(
225
                num_channels=3,
226 227
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
228 229 230
                stride=2,
                act='relu')
            self.conv1 = ConvBNLayer(
231 232 233
                num_channels=64,
                num_filters=64,
                filter_size=3,
Y
Yan Xu 已提交
234 235 236
                stride=2,
                act='relu')
            self.conv2 = ConvBNLayer(
237 238 239 240
                num_channels=64,
                num_filters=128,
                filter_size=3,
                stride=1,
Y
Yan Xu 已提交
241 242
                act='relu')
            self.pool = Pool2D(
243
                pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
Y
Yan Xu 已提交
244 245 246

        self.bottleneck_block_list = []
        num_channels = 64
247 248
        if layers == 152:
            num_channels = 128
Y
Yan Xu 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        for block in range(len(depth)):
            shortcut = False
            for i in range(depth[block]):
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels=num_channels,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        cardinality=cardinality,
                        reduction_ratio=reduction_ratio,
                        shortcut=shortcut))
                num_channels = bottleneck_block._num_channels_out
                self.bottleneck_block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
266
            pool_size=7, pool_type='avg', global_pooling=True)
Y
Yan Xu 已提交
267 268 269
        import math
        stdv = 1.0 / math.sqrt(2048 * 1.0)

270 271 272 273 274 275 276 277
        self.pool2d_avg_output = num_filters[-1] * 4 * 1 * 1

        self.out = Linear(
            self.pool2d_avg_output,
            class_dim,
            act='softmax',
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv)))
Y
Yan Xu 已提交
278 279 280 281 282 283 284

    def forward(self, inputs):
        if self.layers == 50 or self.layers == 101:
            y = self.conv0(inputs)
            y = self.pool(y)
        elif self.layers == 152:
            y = self.conv0(inputs)
285 286
            y = self.conv1(y)
            y = self.conv2(y)
Y
Yan Xu 已提交
287 288 289 290 291
            y = self.pool(y)

        for bottleneck_block in self.bottleneck_block_list:
            y = bottleneck_block(y)
        y = self.pool2d_avg(y)
292
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
Y
Yan Xu 已提交
293 294 295 296 297
        y = self.out(y)
        return y


class TestImperativeResneXt(unittest.TestCase):
298 299 300 301 302 303 304 305 306
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                doc = np.array(item[0]).reshape(3, 224, 224)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield doc, label

        return _reader_imple

Y
Yan Xu 已提交
307 308 309 310
    def test_se_resnext_float32(self):
        seed = 90

        batch_size = train_parameters["batch_size"]
311
        batch_num = 1
Y
Yan Xu 已提交
312
        epoch_num = 1
Y
Yan Xu 已提交
313
        with fluid.dygraph.guard():
C
cnn 已提交
314
            paddle.seed(seed)
L
Leo Chen 已提交
315
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
316

317 318 319
            se_resnext = SeResNeXt()
            optimizer = optimizer_setting(
                train_parameters, parameter_list=se_resnext.parameters())
Y
Yan Xu 已提交
320
            np.random.seed(seed)
321 322 323 324 325 326 327 328 329

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
                paddle.batch(
                    self.reader_decorator(
                        paddle.dataset.flowers.train(use_xmap=False)),
                    batch_size=batch_size,
                    drop_last=True),
                places=fluid.CPUPlace())
Y
Yan Xu 已提交
330 331 332

            dy_param_init_value = {}
            for param in se_resnext.parameters():
L
lujun 已提交
333
                dy_param_init_value[param.name] = param.numpy()
Y
Yan Xu 已提交
334
            for epoch_id in range(epoch_num):
335
                for batch_id, data in enumerate(batch_py_reader()):
Y
Yan Xu 已提交
336 337 338 339

                    if batch_id >= batch_num and batch_num != -1:
                        break

340 341 342
                    img = data[0]
                    label = data[1]
                    label.stop_gradient = True
L
lujun 已提交
343
                    label.stop_gradient = True
Y
Yan Xu 已提交
344 345

                    out = se_resnext(img)
346 347 348
                    softmax_out = fluid.layers.softmax(out, use_cudnn=False)
                    loss = fluid.layers.cross_entropy(
                        input=softmax_out, label=label)
Y
Yan Xu 已提交
349 350
                    avg_loss = fluid.layers.mean(x=loss)

L
lujun 已提交
351
                    dy_out = avg_loss.numpy()
Y
Yan Xu 已提交
352 353 354 355

                    if batch_id == 0:
                        for param in se_resnext.parameters():
                            if param.name not in dy_param_init_value:
L
lujun 已提交
356 357
                                dy_param_init_value[param.name] = param.numpy()
                    avg_loss.backward()
Y
Yan Xu 已提交
358

359 360 361 362 363 364 365
                    dy_grad_value = {}
                    for param in se_resnext.parameters():
                        if param.trainable:
                            np_array = np.array(param._grad_ivar().value()
                                                .get_tensor())
                            dy_grad_value[param.name + core.grad_var_suffix(
                            )] = np_array
Y
Yan Xu 已提交
366 367 368 369 370

                    optimizer.minimize(avg_loss)
                    se_resnext.clear_gradients()

                    dy_param_value = {}
Y
Yan Xu 已提交
371
                    for param in se_resnext.parameters():
L
lujun 已提交
372
                        dy_param_value[param.name] = param.numpy()
Y
Yan Xu 已提交
373 374

        with new_program_scope():
C
cnn 已提交
375
            paddle.seed(seed)
L
Leo Chen 已提交
376
            paddle.framework.random._manual_program_seed(seed)
Y
Yan Xu 已提交
377 378 379 380

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

381
            se_resnext = SeResNeXt()
Y
Yan Xu 已提交
382 383 384 385 386
            optimizer = optimizer_setting(train_parameters)

            np.random.seed(seed)
            train_reader = paddle.batch(
                paddle.dataset.flowers.train(use_xmap=False),
Y
Yan Xu 已提交
387 388
                batch_size=batch_size,
                drop_last=True)
Y
Yan Xu 已提交
389 390 391 392 393

            img = fluid.layers.data(
                name='pixel', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            out = se_resnext(img)
394 395
            softmax_out = fluid.layers.softmax(out, use_cudnn=False)
            loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
Y
Yan Xu 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            avg_loss = fluid.layers.mean(x=loss)
            optimizer.minimize(avg_loss)

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
            static_grad_name_list = []
            for param in se_resnext.parameters():
                static_param_name_list.append(param.name)
            for param in se_resnext.parameters():
                if param.trainable:
                    static_grad_name_list.append(param.name +
                                                 core.grad_var_suffix())

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]
Y
Yan Xu 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
            for epoch_id in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    if batch_id >= batch_num and batch_num != -1:
                        break

                    static_x_data = np.array(
                        [x[0].reshape(3, 224, 224)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(
                            [batch_size, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    fetch_list.extend(static_grad_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_grad_value = {}
                    static_out = out[0]
                    param_start_pos = 1
                    grad_start_pos = len(
                        static_param_name_list) + param_start_pos
                    for i in range(
                            param_start_pos,
                            len(static_param_name_list) + param_start_pos):
                        static_param_value[static_param_name_list[
                            i - param_start_pos]] = out[i]
                    for i in range(grad_start_pos,
                                   len(static_grad_name_list) + grad_start_pos):
                        static_grad_value[static_grad_name_list[
                            i - grad_start_pos]] = out[i]
451

452 453 454
        self.assertTrue(
            np.allclose(static_out, dy_out),
            "\nstatic_out: {}\ndy_out: {}".format(static_out, dy_out))
Y
Yan Xu 已提交
455 456 457 458 459 460 461

        self.assertEqual(len(dy_param_init_value), len(static_param_init_value))

        for key, value in six.iteritems(static_param_init_value):
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
462 463 464 465

        self.assertEqual(len(dy_grad_value), len(static_grad_value))

        for key, value in six.iteritems(static_grad_value):
466 467 468 469
            self.assertTrue(
                np.allclose(value, dy_grad_value[key]),
                "\nstatic_grad_value: {}\ndy_grad_value: {}".format(
                    value, dy_grad_value[key]))
470 471
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))
Y
Yan Xu 已提交
472 473 474

        self.assertEqual(len(dy_param_value), len(static_param_value))
        for key, value in six.iteritems(static_param_value):
475 476 477 478
            self.assertTrue(
                np.allclose(value, dy_param_value[key]),
                "\nstatic_param_value: {}\ndy_param_value: {}".format(
                    value, dy_param_value[key]))
Y
Yan Xu 已提交
479 480 481 482 483
            self.assertTrue(np.isfinite(value.all()))
            self.assertFalse(np.isnan(value.any()))


if __name__ == '__main__':
484
    paddle.enable_static()
Y
Yan Xu 已提交
485
    unittest.main()