dist_matmul.py 67.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

Z
zhaoyingli 已提交
15
from .common import infer_shape
16
from .common import DistributedOperatorImplContainer
17
from .common import DistributedOperatorImpl
18
from .common import register_distributed_operator_impl_container
19 20 21 22 23 24 25
from .common import register_distributed_operator_impl
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
26
from ..dist_attribute import OperatorDistributedAttribute
27 28 29 30
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
31
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
32
from ..process_group import new_process_group
33
from ..utils import _get_comm_group, _get_corresponding_rank
34 35


36
def _update_dims_mapping_for_matmul(dist_op):
37
    changed = False
38 39
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

56
    # Deal with dim > 2 and take care of broadcasting
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
        assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

        for i in range(x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - x_dims_mapping_len)
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - y_dims_mapping_len)
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(out_dims_mapping_len - 2):
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

98
    # The following which uses negative index can be work
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

115
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
116 117 118 119 120 121 122 123 124 125 126 127
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


128 129 130 131
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

132 133 134 135 136
    dist_op_context = ctx.dist_op_context
    main_block = dist_op_context.get_dst_main_program().global_block()
    backward_op = dist_op_context.get_cur_src_op()
    rank_id = dist_op_context.get_rank_id()
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
137 138 139 140
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
141 142
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

    # check if need gradient allreduce
    need_gradient_allreduce = False

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')

    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])
    assert len(
        kwargs['X@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['X@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
    assert not X_var.is_parameter, "left operand(X) [{}] of dist matmul should not be parameter".format(
        X_var.name)

178
    process_mesh = dist_attr.process_mesh
179 180 181 182 183
    var_dim_mapping = dist_attr.get_input_dims_mapping(X_var.name)
    mesh_shape = process_mesh.topology
    batch_size_axis = var_dim_mapping[0]
    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
        need_gradient_allreduce = True
184
        group_ranks = _get_comm_group(process_mesh.processes,
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
                                      process_mesh.topology, batch_size_axis,
                                      rank_id)
        dp_degree = len(group_ranks)
        dp_group = new_process_group(group_ranks)

    Y_var = main_block.var(kwargs['Y'][0])
    if need_gradient_allreduce and Y_var.is_parameter:
        Y_Grad_var = main_block.var(kwargs['Y@GRAD'][0])
        allreduce_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [Y_Grad_var]},
            outputs={'Out': [Y_Grad_var]},
            attrs={
                'ring_id': dp_group.id,
                'use_calc_stream': True,
                OP_ROLE_KEY: OpRole.Backward
            })
        scale_op = main_block.append_op(
            type='scale',
            inputs={'X': Y_Grad_var},
            outputs={'Out': Y_Grad_var},
            attrs={'scale': 1.0 / dp_degree,
                   OP_ROLE_KEY: OpRole.Backward})
        main_block._sync_with_cpp()

210 211 212
        dims_mapping = ctx.get_tensor_dist_attr_for_program(
            Y_Grad_var).dims_mapping
        process_mesh = dist_attr.process_mesh
213
        for op in [allreduce_op, scale_op]:
214 215
            op_attr = OperatorDistributedAttribute()
            op_attr.process_mesh = process_mesh
216 217
            op_attr.set_output_dims_mapping(Y_Grad_var.name, dims_mapping)
            op_attr.set_input_dims_mapping(Y_Grad_var.name, dims_mapping)
218
            ctx.set_op_dist_attr_for_program(op, op_attr)
219 220


221
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
222

223
    assert Weight_var.name not in dist_op_context.already_init_sync_vars
224
    assert startup_block.has_var(Weight_var.name)
225
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
226
    param = startup_block.var(Weight_var.name)
227 228 229
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
230 231 232 233 234

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
235
            group_ranks = _get_comm_group(process_mesh.processes,
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

            startup_block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': sync_group.id,
                    'root': 0,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: OpRole.Forward
                })
    startup_block._sync_with_cpp()


252
class DistributedMatmul(DistributedOperatorImplContainer):
253 254 255 256 257
    def __init__(self, name):
        super(DistributedMatmul, self).__init__()
        self._name = name


258 259
register_distributed_operator_impl_container("matmul",
                                             DistributedMatmul("matmul"))
260 261 262 263 264 265 266


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl0, self).__init__()
        self._name = name
267
        self._forward_implemented = True
268
        self._backward_implemented = True
269

270 271 272
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
273 274 275 276 277 278 279 280 281 282 283 284 285 286
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

287 288 289
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
290 291 292 293 294 295 296 297 298
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_replicate(out_dims_mapping[-1]):
            return False

        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        input_dims_mapping = []
        ordered_input_shard_dims_mapping = []

        for dim in (x_dims_mapping + y_dims_mapping):
            input_dims_mapping.append(dim)

        for item in input_dims_mapping:
            if item not in ordered_input_shard_dims_mapping and item != -1:
                ordered_input_shard_dims_mapping.append(item)

        for mapping in out_dims_mapping:
            if mapping not in input_dims_mapping:
                return False

        if is_dim_shard(x_dims_mapping[0]):
            order_index = 0
            for idx, item in enumerate(out_dims_mapping):
                if item != -1:
                    if item != ordered_input_shard_dims_mapping[order_index]:
                        return False
                    else:
                        order_index += 1
            if order_index != len(ordered_input_shard_dims_mapping):
                return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_shard(x_dims_mapping[0]):
            for mapping in y_dims_mapping[1:]:
                if is_dim_shard(mapping) and mapping == x_dims_mapping[0]:
                    return False

        return True

376
    def update_dims_mapping(self, dist_op):
377
        changed = False
378
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
379 380 381 382
        if dim_changed:
            changed = True
        return changed

383 384 385 386 387 388
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

389 390 391 392 393 394
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
395 396 397 398
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
399 400
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
401 402
                                              rank_id)

403
        # check validation of inputs / outputs
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
427 428
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
429 430 431 432 433 434

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

450 451 452 453 454 455 456 457
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
458 459 460
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
461 462 463 464 465 466 467 468 469 470 471 472 473 474

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
475 476
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
477 478 479 480 481 482 483 484 485 486 487 488 489

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_op = main_block.append_op(
            type='matmul', inputs=inputs, outputs={'Out': Out_var}, attrs=attrs)
Z
zhaoyingli 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
540 541 542

        # init param sync
        if Weight_var.is_parameter:
543
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
544 545 546 547 548
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
549

550 551 552 553 554 555

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl1, self).__init__()
        self._name = name
556
        self._forward_implemented = True
557
        self._backward_implemented = True
558

559 560 561
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

577 578 579
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
580 581 582 583 584 585 586 587 588 589
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if op_desc.attr('transpose_X') or op_desc.attr('transpose_Y'):
            return False
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # for gpt2, x dims > y dims, this is a temporary solution
        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_replicate(x_dims_mapping[-1]):
            return False

        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False

        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        x_shard_dim_count = 0
        x_shard_dims = []
        y_shard_dim_count = 0
        y_shard_dims = []
        for dim in x_dims_mapping:
            if is_dim_shard(dim):
                x_shard_dim_count += 1
                x_shard_dims.append(dim)

        for dim in y_dims_mapping:
            if is_dim_shard(dim):
                y_shard_dim_count += 1
                y_shard_dims.append(dim)

        if not x_shard_dims and not y_shard_dims:
            return False

        if x_shard_dims[-1] != y_shard_dims[0]:
            return False

        if x_shard_dim_count == y_shard_dim_count:
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    return False
            if x_shard_dims != y_shard_dims:
                return False
        else:
            if x_shard_dim_count < y_shard_dim_count:
                return False
            output_shard_dims = []
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    output_shard_dims.append(dim)
            if not output_shard_dims or output_shard_dims[0] != x_shard_dims[0]:
                return False

        return True

679
    def update_dims_mapping(self, dist_op):
680
        changed = False
681
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
682 683 684 685
        if dim_changed:
            changed = True
        return changed

686 687 688 689 690 691
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

692 693 694 695 696 697
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
698 699 700 701
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
702 703
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
704 705
                                              rank_id)

706
        # check validation of inputs / outputs
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
730 731
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
748 749 750 751 752 753 754 755 756

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

757 758 759 760 761 762 763 764
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
765 766 767
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
768 769 770 771 772 773

        matmul_op = main_block.append_op(
            type='matmul',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)
Z
zhaoyingli 已提交
774 775
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
776 777 778 779 780 781 782 783 784 785

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
826 827 828

        # init param sync
        if Weight_var.is_parameter:
829
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
830 831 832 833 834
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
835

836

837
# ReplicateParallel
838 839 840 841 842
class DistributedMatmulImpl2(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl2, self).__init__()
        self._name = name

843 844 845
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

865 866 867
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
868 869 870 871 872 873 874 875 876 877 878
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        assert len(x_dims_mapping) >= len(
            y_dims_mapping
        ), "now just support x dims > y dims,but x:{0} and y:{1}".format(
            x_dims_mapping, y_dims_mapping)
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False

        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

932
    def update_dims_mapping(self, dist_op):
933
        changed = False
934
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
935 936 937 938
        if dim_changed:
            changed = True
        return changed

939 940 941 942
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

943 944 945 946 947 948 949 950 951

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


952
class DistributedMatmulV2(DistributedOperatorImplContainer):
953 954 955 956 957
    def __init__(self, name):
        super(DistributedMatmulV2, self).__init__()
        self._name = name


958 959
register_distributed_operator_impl_container("matmul_v2",
                                             DistributedMatmulV2("matmul_v2"))
960 961


962 963 964 965 966 967
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl0, self).__init__()
        self._name = name
        self._forward_implemented = True
968
        self._backward_implemented = True
969

970 971 972
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
973 974 975 976 977 978 979 980 981 982 983 984 985 986
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

987 988 989
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
990 991 992 993 994 995 996 997 998
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
            return False
        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]
        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_replicate(out_dims_mapping[-1]):
            return False

        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        input_dims_mapping = []
        ordered_input_shard_dims_mapping = []

        for dim in (x_dims_mapping + y_dims_mapping):
            input_dims_mapping.append(dim)

        for item in input_dims_mapping:
            if item not in ordered_input_shard_dims_mapping and item != -1:
                ordered_input_shard_dims_mapping.append(item)

        for mapping in out_dims_mapping:
            if mapping not in input_dims_mapping:
                return False

        if is_dim_shard(x_dims_mapping[0]):
            order_index = 0
            for idx, item in enumerate(out_dims_mapping):
                if item != -1:
                    if item != ordered_input_shard_dims_mapping[order_index]:
                        return False
                    else:
                        order_index += 1
            if order_index != len(ordered_input_shard_dims_mapping):
                return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False

        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_shard(x_dims_mapping[0]):
            for mapping in y_dims_mapping[1:]:
                if is_dim_shard(mapping) and mapping == x_dims_mapping[0]:
                    return False

        return True

1079
    def update_dims_mapping(self, dist_op):
1080
        changed = False
1081
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1082 1083 1084 1085
        if dim_changed:
            changed = True
        return changed

1086 1087 1088 1089 1090 1091
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1092 1093 1094 1095 1096 1097
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1098 1099 1100 1101
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1102 1103
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1104 1105
                                              rank_id)

1106
        # check validation of inputs / outputs
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1130 1131
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1132 1133 1134 1135 1136 1137

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1153 1154 1155 1156 1157 1158 1159 1160
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1161 1162 1163
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })
Z
zhaoyingli 已提交
1177 1178
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': Out_var},
            attrs=attrs)
Z
zhaoyingli 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                          input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                          tensor_dist_attr)
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1237 1238 1239

        # init param sync
        if Weight_var.is_parameter:
1240
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1241 1242 1243 1244 1245
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1246 1247 1248 1249 1250 1251 1252 1253


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl1, self).__init__()
        self._name = name
        self._forward_implemented = True
1254
        self._backward_implemented = True
1255

1256 1257 1258
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1274 1275 1276
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
            return False
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        assert len(x_dims_mapping) >= len(
            y_dims_mapping), "now just support x dims > y dims"
        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        if is_dim_replicate(x_dims_mapping[-1]):
            return False

        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False

        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False

        x_shard_dim_count = 0
        x_shard_dims = []
        y_shard_dim_count = 0
        y_shard_dims = []
        for dim in x_dims_mapping:
            if is_dim_shard(dim):
                x_shard_dim_count += 1
                x_shard_dims.append(dim)

        for dim in y_dims_mapping:
            if is_dim_shard(dim):
                y_shard_dim_count += 1
                y_shard_dims.append(dim)

        if not x_shard_dims and not y_shard_dims:
            return False

        if x_shard_dims[-1] != y_shard_dims[0]:
            return False

        if x_shard_dim_count == y_shard_dim_count:
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    return False
            if x_shard_dims != y_shard_dims:
                return False
        else:
            if x_shard_dim_count < y_shard_dim_count:
                return False
            output_shard_dims = []
            for dim in out_dims_mapping:
                if is_dim_shard(dim):
                    output_shard_dims.append(dim)
            if not output_shard_dims or output_shard_dims[0] != x_shard_dims[0]:
                return False
        return True

1375
    def update_dims_mapping(self, dist_op):
1376
        changed = False
1377
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1378 1379 1380 1381
        if dim_changed:
            changed = True
        return changed

1382 1383 1384 1385 1386 1387
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1388 1389 1390 1391 1392 1393
        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.get_dst_main_program().global_block()
        startup_block = dist_op_context.get_dst_startup_program().global_block()
        src_op = dist_op_context.get_cur_src_op()
        rank_id = dist_op_context.get_rank_id()
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1394 1395 1396 1397
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1398 1399
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1400 1401
                                              rank_id)

1402
        # check validation of inputs / outputs
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1426 1427
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1449 1450 1451 1452 1453 1454 1455 1456
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1457 1458 1459
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1460 1461 1462 1463 1464 1465

        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)
Z
zhaoyingli 已提交
1466 1467
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })
Z
zhaoyingli 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1518 1519 1520

        # init param sync
        if Weight_var.is_parameter:
1521
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1522 1523 1524 1525 1526
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1527 1528


1529
# ReplicateParallel
1530
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1531
    def __init__(self, name):
1532
        super(DistributedMatmulV2Impl2, self).__init__()
1533 1534
        self._name = name

1535 1536 1537
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1557 1558 1559 1560 1561
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    def is_auto_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        assert len(x_dims_mapping) >= len(
            y_dims_mapping
        ), "now just support x dims > y dims,but x:{0} and y:{1}".format(
            x_dims_mapping, y_dims_mapping)

        if len(x_dims_mapping) == len(y_dims_mapping) and len(
                x_dims_mapping) == 4:
            if x_dims_mapping[:2] != y_dims_mapping[:2]:
                return False
            if x_dims_mapping[:2] != out_dims_mapping[:2]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        elif len(x_dims_mapping) != len(y_dims_mapping) and len(
                x_dims_mapping) == 3:
            if x_dims_mapping[0] != out_dims_mapping[0]:
                return False
            x_dims_mapping = x_dims_mapping[-2:]
            y_dims_mapping = y_dims_mapping[-2:]
            out_dims_mapping = out_dims_mapping[-2:]

        if is_dim_shard(out_dims_mapping[-1]):
            return False

        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        if is_dim_shard(x_dims_mapping[-1]):
            return False

        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False

        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

1628
    def update_dims_mapping(self, dist_op):
1629
        changed = False
1630
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1631 1632 1633 1634
        if dim_changed:
            changed = True
        return changed

1635 1636 1637 1638
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1639

1640 1641 1642 1643
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
1644
register_distributed_operator_impl(
1645
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))