executor.cc 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/executor.h"
Y
Yang Yang 已提交
16

17
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
18 19 20 21 22 23
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/platform/place.h"
X
Xin Pan 已提交
24
#include "paddle/fluid/platform/profiler.h"
Y
Yang Yu 已提交
25

D
dzhwinter 已提交
26
DECLARE_bool(benchmark);
Y
Yang Yu 已提交
27 28 29
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
qijun 已提交
30 31 32

namespace paddle {
namespace framework {
X
Xin Pan 已提交
33 34 35 36 37
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace
Q
qijun 已提交
38

Q
Qiao Longfei 已提交
39 40 41
ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}
Y
Yu Yang 已提交
42

Q
Qiao Longfei 已提交
43 44 45
ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}
Y
Yu Yang 已提交
46

D
dzhwinter 已提交
47
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
48

49 50
static void CreateTensor(Variable* var, proto::VarType::Type var_type) {
  if (var_type == proto::VarType::LOD_TENSOR) {
Q
QI JUN 已提交
51
    var->GetMutable<LoDTensor>();
52
  } else if (var_type == proto::VarType::SELECTED_ROWS) {
Q
QI JUN 已提交
53
    var->GetMutable<SelectedRows>();
54
  } else if (var_type == proto::VarType::FEED_MINIBATCH) {
Q
QI JUN 已提交
55
    var->GetMutable<FeedFetchList>();
56
  } else if (var_type == proto::VarType::FETCH_LIST) {
Q
QI JUN 已提交
57
    var->GetMutable<FeedFetchList>();
58
  } else if (var_type == proto::VarType::STEP_SCOPES) {
Y
Yu Yang 已提交
59
    var->GetMutable<std::vector<framework::Scope>>();
60
  } else if (var_type == proto::VarType::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
61
    var->GetMutable<LoDRankTable>();
62
  } else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
63
    var->GetMutable<LoDTensorArray>();
64
  } else if (var_type == proto::VarType::PLACE_LIST) {
Y
Yang Yu 已提交
65
    var->GetMutable<platform::PlaceList>();
66
  } else if (var_type == proto::VarType::READER) {
F
fengjiayi 已提交
67
    var->GetMutable<ReaderHolder>();
68 69
  } else if (var_type == proto::VarType::CHANNEL) {
    var->GetMutable<ChannelHolder>();
T
typhoonzero 已提交
70 71
  } else if (var_type == proto::VarType::RAW) {
    // GetMutable will be called in operator
Q
QI JUN 已提交
72 73
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
74
        "Variable type %d is not in "
F
fengjiayi 已提交
75
        "[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
T
typhoonzero 已提交
76
        "LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
Y
Yu Yang 已提交
77
        var_type);
Q
QI JUN 已提交
78 79 80
  }
}

Y
Yang Yu 已提交
81 82
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
Y
Yang Yu 已提交
83
  if (tensor.memory_size() == 0) {
Y
Yang Yu 已提交
84 85
    return;
  }
Y
Yang Yu 已提交
86 87
  if (tensor.type().hash_code() != typeid(float).hash_code() &&
      tensor.type().hash_code() != typeid(double).hash_code()) {
Y
Yang Yu 已提交
88 89
    return;
  }
Y
Yi Wang 已提交
90 91 92 93
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
Y
Yang Yu 已提交
94 95
}

Y
Yu Yang 已提交
96
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
97
                   bool create_local_scope, bool create_vars) {
X
Xin Pan 已提交
98
  platform::RecordBlock b(block_id);
Q
Qiao Longfei 已提交
99 100
  auto ctx = Prepare(pdesc, block_id);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
Q
qijun 已提交
101 102
}

103 104 105 106 107 108 109
// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
110 111
    const BlockDesc& block,
    std::map<std::string, const LoDTensor*>& feed_targets,
112 113
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
114
  for (auto* op : block.AllOps()) {
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    if (op->Type() == kFeedOpType) {
      feed_count++;
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

    // When feed operator are present, so should be feed_holder
133
    auto var = block.FindVar(feed_holder_name);
134 135
    PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                            feed_holder_name);
136
    PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
137 138 139 140 141 142 143 144 145 146 147 148 149 150
                      "'%s' variable should be 'FEED_MINIBATCH' type",
                      feed_holder_name);
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
151
    const BlockDesc& block, std::map<std::string, LoDTensor*>& fetch_targets,
152 153
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
154
  for (auto* op : block.AllOps()) {
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    if (op->Type() == kFetchOpType) {
      fetch_count++;
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

    // When fetch operator are present, so should be fetch_holder
173
    auto var = block.FindVar(fetch_holder_name);
174 175
    PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                            fetch_holder_name);
176
    PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
177 178 179 180 181 182 183 184 185 186 187 188
                      "'%s' variable should be 'FETCH_LIST' type",
                      fetch_holder_name);
  }

  return fetch_count > 0;
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
                   std::map<std::string, const LoDTensor*>& feed_targets,
                   std::map<std::string, LoDTensor*>& fetch_targets,
                   const std::string& feed_holder_name,
                   const std::string& fetch_holder_name) {
X
Xin Pan 已提交
189
  platform::RecordBlock b(kProgramId);
190 191 192 193 194 195 196 197 198 199
  bool has_feed_ops =
      has_feed_operators(program.Block(0), feed_targets, feed_holder_name);
  bool has_fetch_ops =
      has_fetch_operators(program.Block(0), fetch_targets, fetch_holder_name);

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
  if (!has_feed_ops || !has_fetch_ops) {
    copy_program = std::unique_ptr<ProgramDesc>(new ProgramDesc(program)).get();
  }

200 201
  auto* global_block = copy_program->MutableBlock(0);

202
  if (!has_feed_ops) {
203 204
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
205
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    feed_holder->SetPersistable(true);

    int i = 0;
    for (auto& feed_target : feed_targets) {
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

  // map the data of feed_targets to feed_holder
  for (auto* op : global_block->AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      SetFeedVariable(scope, *feed_targets[feed_target_name], feed_holder_name,
                      idx);
    }
  }

235
  if (!has_fetch_ops) {
236 237
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
238
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    fetch_holder->SetPersistable(true);

    int i = 0;
    for (auto& fetch_target : fetch_targets) {
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

  Run(*copy_program, scope, 0, true, true);

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block->AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      *fetch_targets[fetch_target_name] =
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

Q
Qiao Longfei 已提交
271 272
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id) {
Y
Yu Yang 已提交
273 274 275 276 277 278
  auto* ctx = new ExecutorPrepareContext(program, block_id);
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
Q
Qiao Longfei 已提交
279
  return std::unique_ptr<ExecutorPrepareContext>(ctx);
Y
Yu Yang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars) {
  auto& block = ctx->prog_.Block(ctx->block_id_);

  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
      for (auto& var : block.AllVars()) {
        if (var->Name() == framework::kEmptyVarName) {
          continue;
        }

        if (var->Persistable()) {
          auto* ptr = scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " global, which pointer is " << ptr;
        } else {
          auto* ptr = local_scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " locally, which pointer is " << ptr;
        }
      }
    } else {
      for (auto& var : block.AllVars()) {
        auto* ptr = local_scope->Var(var->Name());
        CreateTensor(ptr, var->GetType());
        VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
                << ptr;
      }
    }  // if (create_local_scope)
  }    // if (create_vars)

  for (auto& op : ctx->ops_) {
    VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
319
    op->Run(*local_scope, place_);
Y
Yu Yang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

    if (FLAGS_benchmark) {
      VLOG(2) << "Memory used after operator " + op->Type() + " running: "
              << memory::memory_usage(place_);
    }
    if (FLAGS_check_nan_inf) {
      for (auto& vname : op->OutputVars(true)) {
        auto* var = local_scope->FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
        }
      }
    }
  }
  if (create_vars && create_local_scope) {
    scope->DeleteScope(local_scope);
  }
  if (FLAGS_benchmark) {
    VLOG(2) << "-------------------------------------------------------";
    VLOG(2) << "Memory used after deleting local scope: "
            << memory::memory_usage(place_);
    VLOG(2) << "-------------------------------------------------------";
  }
}

Q
qijun 已提交
346 347
}  // namespace framework
}  // namespace paddle