dataset.py 34.8 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
D
dongdaxiang 已提交
19
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
20 21 22


class DatasetFactory(object):
23 24
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
25
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
26 27 28
    the default is "QueueDataset".

    Example:
29 30 31 32 33
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

34
    """
D
dongdaxiang 已提交
35

D
dongdaxiang 已提交
36
    def __init__(self):
37
        """ Init. """
D
dongdaxiang 已提交
38 39
        pass

40
    def create_dataset(self, datafeed_class="QueueDataset"):
41
        """
H
hutuxian 已提交
42
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
43
        the default is "QueueDataset".
D
dongdaxiang 已提交
44

45 46 47 48
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
49
        Examples:
50 51 52 53 54
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

55
        """
D
dongdaxiang 已提交
56 57
        try:
            dataset = globals()[datafeed_class]()
58
            return dataset
D
dongdaxiang 已提交
59 60 61 62 63 64
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
65
    """ Base dataset class. """
D
dongdaxiang 已提交
66

D
dongdaxiang 已提交
67
    def __init__(self):
68
        """ Init. """
D
dongdaxiang 已提交
69 70 71 72
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
73
        self.dataset = core.Dataset("MultiSlotDataset")
74
        self.thread_num = 1
J
jiaqi 已提交
75
        self.filelist = []
D
dongdaxiang 已提交
76 77 78 79 80 81

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

82 83 84 85 86 87
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
88 89

        Args:
90
            pipe_command(str): pipe command
91

D
dongdaxiang 已提交
92 93 94
        """
        self.proto_desc.pipe_command = pipe_command

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

112 113 114 115 116 117 118 119
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
120
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
157 158 159 160
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

161 162 163 164 165 166
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
167 168

        Args:
169
            batch_size(int): batch size
D
dongdaxiang 已提交
170 171 172 173

        """
        self.proto_desc.batch_size = batch_size

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

190
    def set_thread(self, thread_num):
191 192 193
        """
        Set thread num, it is the num of readers.

194 195 196 197 198 199
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
200 201

        Args:
202
            thread_num(int): thread num
203
        """
204
        self.dataset.set_thread_num(thread_num)
205
        self.thread_num = thread_num
206 207

    def set_filelist(self, filelist):
208 209 210
        """
        Set file list in current worker.

211 212 213 214 215 216
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
217 218

        Args:
219
            filelist(list): file list
220
        """
221
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
222
        self.filelist = filelist
223

224 225 226
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
227
    def set_use_var(self, var_list):
228 229 230
        """
        Set Variables which you will use.

231 232 233 234 235 236
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
237 238

        Args:
239
            var_list(list): variable list
240
        """
241
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
242
        for var in var_list:
243
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
244 245 246 247
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
248
                slot_var.shape.extend(var.shape)
249
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
250
                slot_var.type = "float"
251
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
252 253 254 255 256 257
                slot_var.type = "uint64"
            else:
                raise ValueError(
                    "Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
                )

258
    def set_hdfs_config(self, fs_name, fs_ugi):
259 260 261
        """
        Set hdfs config: fs name ad ugi

262 263 264 265 266 267
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
268 269

        Args:
270 271
            fs_name(str): fs name
            fs_ugi(str): fs ugi
272
        """
273 274
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

291
    def _prepare_to_run(self):
292 293 294 295
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
296 297 298
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
299
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
300 301 302 303
        self.dataset.create_readers()

    def _finish_to_run(self):
        self.dataset.destroy_readers()
304

D
dongdaxiang 已提交
305 306 307 308
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

309 310 311 312 313 314
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
315 316 317 318 319 320

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

321 322 323 324 325 326
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
327 328

class InMemoryDataset(DatasetBase):
329 330
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
331 332
    and shuffle data before training.
    This class should be created by DatasetFactory
333 334

    Example:
335
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
336
    """
D
dongdaxiang 已提交
337

D
dongdaxiang 已提交
338
    def __init__(self):
339
        """ Init. """
340 341
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
342
        self.fleet_send_batch_size = None
343
        self.is_user_set_queue_num = False
J
jiaqi 已提交
344
        self.queue_num = None
345 346
        self.parse_ins_id = False
        self.parse_content = False
347 348 349
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
350
        self.merge_by_lineid = False
351
        self.fleet_send_sleep_seconds = None
J
jiaqi 已提交
352

353 354 355 356 357 358
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type

J
jiaqi 已提交
359 360 361 362 363
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
364
        if self.thread_num <= 0:
365
            self.thread_num = 1
J
jiaqi 已提交
366 367 368 369
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
370 371
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
372 373 374
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
375 376 377 378
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

379 380
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
H
hutuxian 已提交
381
            self.dataset.dynamic_adjust_channel_num(thread_num, False)
382 383 384 385
        self.dataset.dynamic_adjust_readers_num(thread_num)

    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
H
hutuxian 已提交
386
            self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
387 388
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

J
jiaqi 已提交
389 390 391 392 393
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
394
            queue_num(int): dataset output queue num
J
jiaqi 已提交
395 396 397 398 399 400 401 402 403

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
404
        self.is_user_set_queue_num = True
J
jiaqi 已提交
405 406
        self.queue_num = queue_num

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

547
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
548
        """
549
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

581
    def set_merge_by_lineid(self, merge_size=2):
582 583 584 585 586
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
587
            merge_size(int): ins size to merge. default is 2.
588 589 590 591 592 593 594 595 596

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
597
        self.dataset.set_merge_by_lineid(merge_size)
598
        self.merge_by_lineid = True
599
        self.parse_ins_id = True
600

601 602 603 604 605 606 607 608 609 610
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

M
bug fix  
malin10 已提交
611 612 613 614 615 616 617 618 619
    def init_tdm_tree(self, configs):
        self.dataset.init_tdm_tree(configs)

    def tdm_sample(self, sample_slot, type_slot):
        self.dataset.tdm_sample(sample_slot, type_slot)

    def tdm_dump(self, name, table_id, fea_value_dim, tree_path):
        self.dataset.tdm_dump(name, table_id, fea_value_dim, tree_path)

620
    def load_into_memory(self):
621 622 623
        """
        Load data into memory

624 625 626 627 628 629 630 631
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
632
        """
633
        self._prepare_to_run()
634
        self.dataset.load_into_memory()
D
dongdaxiang 已提交
635

636
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
637 638 639
        """
        Load data into memory in async mode

640 641 642
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
643 644 645 646 647 648 649 650 651 652 653
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
654 655 656 657
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        self.dataset.preload_into_memory()

    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
675
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
676

D
dongdaxiang 已提交
677
    def local_shuffle(self):
678 679 680
        """
        Local shuffle

681 682 683 684 685 686 687 688 689
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
690
        """
691
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
692

693
    def global_shuffle(self, fleet=None, thread_num=12):
694 695
        """
        Global shuffle.
696 697 698
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
699

700
        Examples:
701 702 703 704 705 706 707 708 709
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
710 711

        Args:
712
            fleet(Fleet): fleet singleton. Default None.
713
            thread_num(int): shuffle thread num. Default is 12.
714

715
        """
716 717
        trainer_num = 1
        if fleet is not None:
X
xujiaqi01 已提交
718
            fleet._role_maker.barrier_worker()
719
            trainer_num = fleet.worker_num()
720
        if self.fleet_send_batch_size is None:
721 722 723
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
724
        self.dataset.register_client2client_msg_handler()
725
        self.dataset.set_trainer_num(trainer_num)
J
jiaqi 已提交
726
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
727
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
728
        if fleet is not None:
X
xujiaqi01 已提交
729
            fleet._role_maker.barrier_worker()
730
        self.dataset.global_shuffle(thread_num)
731
        if fleet is not None:
X
xujiaqi01 已提交
732
            fleet._role_maker.barrier_worker()
733 734 735
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
736
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
737

738 739
    def release_memory(self):
        """
740 741
        :api_attr: Static Graph
        
742 743
        Release InMemoryDataset memory data, when data will not be used again.

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

759 760
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

786 787 788 789 790 791 792 793 794 795 796 797 798 799
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

800 801 802 803 804 805 806 807 808 809
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
810 811 812 813 814 815 816

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
817 818
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
            return global_data_size[0]
        return local_data_size[0]

    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

837 838 839 840 841 842 843 844 845 846 847
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
848 849 850 851 852 853 854

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
855 856
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
857 858 859
            return global_data_size[0]
        return local_data_size[0]

X
xjqbest 已提交
860

D
dongdaxiang 已提交
861
class QueueDataset(DatasetBase):
862 863 864
    """
    QueueDataset, it will process data streamly.

865 866 867 868 869 870
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

871
    """
D
dongdaxiang 已提交
872

D
dongdaxiang 已提交
873
    def __init__(self):
874
        """
D
dongdaxiang 已提交
875 876
        Initialize QueueDataset
        This class should be created by DatasetFactory
877
        """
878
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
879
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
895
    def local_shuffle(self):
896
        """
897
        Local shuffle data.
D
dongdaxiang 已提交
898

D
dongdaxiang 已提交
899 900
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
901 902 903 904 905 906 907 908

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

909 910 911
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

912
        """
D
dongdaxiang 已提交
913 914 915
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
916

917
    def global_shuffle(self, fleet=None):
918
        """
919 920
        Global shuffle data.

D
dongdaxiang 已提交
921 922
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
923

924 925 926
        Args:
            fleet(Fleet): fleet singleton. Default None.

927 928 929 930 931 932 933 934
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

935 936 937
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

938
        """
D
dongdaxiang 已提交
939 940 941
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
942 943 944 945 946


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
947 948 949 950 951 952

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
953 954 955 956
    """

    def __init__(self):
        """
957 958
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
959 960 961 962 963 964
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
965 966
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
967 968 969 970 971 972 973 974
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
975
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
976 977 978 979
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
980 981 982 983 984 985 986 987 988 989


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
990
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
991 992 993 994
    """

    def __init__(self):
        """
995 996
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
997 998 999
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1000
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1001

H
hutuxian 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1011 1012
    def begin_pass(self):
        """
1013
        Begin Pass
H
hutuxian 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1023 1024
        self.boxps.begin_pass()

1025
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1026
        """
1027
        End Pass
H
hutuxian 已提交
1028 1029 1030 1031 1032 1033
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1034
              dataset.end_pass(True)
H
hutuxian 已提交
1035
        """
1036
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1037 1038 1039

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1040
        Wait async preload done
1041
        Wait Until Feed Pass Done
H
hutuxian 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1052 1053 1054 1055
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1066 1067 1068 1069 1070
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1081 1082
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1083 1084 1085 1086 1087

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1088 1089 1090

    def _dynamic_adjust_after_train(self):
        pass
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)