layer_function_generator.py 8.5 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14 15 16
import re
import cStringIO
import functools
17
import warnings
Y
yuyang18 已提交
18
import string
D
dzhwinter 已提交
19

20
from ..proto import framework_pb2
21 22
from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper
D
dzhwinter 已提交
23

Y
yuyang18 已提交
24
__all__ = ['deprecated', 'generate_layer_fn', 'autodoc', 'templatedoc']
D
dzhwinter 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
43 44 45 46
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


D
dzhwinter 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


96
def generate_layer_fn(op_type):
97
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
98 99

    Args:
100
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
Y
yuyang18 已提交
114
                         "automatically generated. {0}".format(op_type))
D
dzhwinter 已提交
115 116 117

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
118
            "Only non duplicable op can be automatically generated.")
D
dzhwinter 已提交
119 120 121 122

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
123
                             "all intermediate ops are not duplicable.")
D
dzhwinter 已提交
124 125 126 127

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
128
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
129 130 131 132 133 134 135 136 137 138
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
139 140 141 142
            if len(val) == 0:
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

        return dtype

Y
Yu Yang 已提交
157
    def func(*args, **kwargs):
D
dzhwinter 已提交
158 159
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
160
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
161 162 163 164 165 166 167

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
168 169 170
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
171 172 173
            inputs[ipt.name] = val

        outputs = dict()
174 175 176 177 178 179 180
        out = kwargs.pop(_convert_(o_name), [])
        if out:
            out_var = out[0] if (isinstance(out, list) or
                                 isinstance(out, tuple)) else out
        else:
            out_var = helper.create_tmp_variable(dtype=dtype)
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
181 182 183 184
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
185
        return helper.append_activation(out_var)
D
dzhwinter 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


def deprecated(func_or_class):
    """
    Deprecated warning decorator. It will result a warning message.
    Should be used before class or function, member function
    """

    @functools.wraps(func)
    def func_wrapper(*args, **kwargs):
        """
        Wrap func with deprecated warning
        """
Y
Yang Yu 已提交
203
        warnings.simplefilter('always', DeprecationWarning)  # turn off filter
D
dzhwinter 已提交
204 205 206 207
        warnings.warn(
            "Call to deprecated function {}.".format(func.__name__),
            category=DeprecationWarning,
            stacklevel=2)
Y
Yang Yu 已提交
208
        warnings.simplefilter('default', DeprecationWarning)  # reset filter
D
dzhwinter 已提交
209 210 211
        return func(*args, **kwargs)

    return func_wrapper
Y
Yang Yu 已提交
212 213


214 215 216 217 218 219 220
def autodoc(comment=""):
    def __impl__(func):
        func.__doc__ = _generate_doc_string_(OpProtoHolder.instance(
        ).get_op_proto(func.__name__)) + comment
        return func

    return __impl__
Y
yuyang18 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233


def templatedoc():
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
Y
yuyang18 已提交
234
        Decorated function.
Y
yuyang18 已提交
235 236 237 238 239
    """

    def __impl__(func):
        op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
240 241 242 243 244 245 246 247 248

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
            line = line.lstrip()
            comment += line
            comment += "\n"

        args = {"comment": comment}
Y
yuyang18 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
            args["{0}_comment".format(input_name)] = each_input.comment
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
            args["{0}_comment".format(input_name)] = each_attr.comment
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
            args["{0}_comment".format(output_name)] = each_opt.comment
            args["{0}_type".format(output_name)] = "Variable"

        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__