test_pool1d_api.py 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def max_pool1D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=False,
                             adaptive=False,
                             data_type=np.float64):
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
        L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

        out[:, :, i] = np.max(x_masked, axis=(2))
    return out


def avg_pool1D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=False,
                             adaptive=False,
                             data_type=np.float64):
    N, C, L = x.shape
    if global_pool == 1:
        ksize = [L]
    if adaptive:
        L_out = ksize[0]
    else:
        L_out = (L - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     L - ksize[0] + 2 * paddings[0]) // strides[0] + 1

    out = np.zeros((N, C, L_out))
    for i in range(L_out):
        if adaptive:
            r_start = adaptive_start_index(i, L, ksize[0])
            r_end = adaptive_end_index(i, L, ksize[0])
        else:
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], L))
        x_masked = x[:, :, r_start:r_end]

        field_size = (r_end - r_start) \
            if (exclusive or adaptive) else (ksize[0])
        if data_type == np.int8 or data_type == np.uint8:
            out[:, :, i] = (np.rint(
                np.sum(x_masked, axis=(2, 3)) / field_size)).astype(data_type)
        else:
            out[:, :, i] = (np.sum(x_masked, axis=(2)) /
                            field_size).astype(data_type)
    return out


C
cnn 已提交
108
class TestPool1D_API(unittest.TestCase):
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_avg_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=0)

            input_np = np.random.random([2, 3, 32]).astype("float32")
            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0], ceil_mode=False)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_avg_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.avg_pool1d(input, kernel_size=2, stride=2, padding=[0])

            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0])

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
141
            avg_pool1d_dg = paddle.nn.layer.AvgPool1D(
142 143 144 145
                kernel_size=2, stride=None, padding=0)
            result = avg_pool1d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
146 147 148 149 150
    def check_avg_dygraph_padding_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.avg_pool1d(
151
                input, kernel_size=2, stride=2, padding=[1], exclusive=True)
D
Double_V 已提交
152 153 154 155 156 157

            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[1], exclusive=False)

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
158
            avg_pool1d_dg = paddle.nn.AvgPool1D(
159 160
                kernel_size=2, stride=None, padding=1, exclusive=True)

D
Double_V 已提交
161 162 163
            result = avg_pool1d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    def check_max_static_results(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input = fluid.data(name="input", shape=[2, 3, 32], dtype="float32")
            result = F.max_pool1d(input, kernel_size=2, stride=2, padding=[0])

            input_np = np.random.random([2, 3, 32]).astype("float32")
            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0])

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"input": input_np},
                              fetch_list=[result])
            self.assertTrue(np.allclose(fetches[0], result_np))

    def check_max_dygraph_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.max_pool1d(input, kernel_size=2, stride=2, padding=0)

            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0])

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
190
            max_pool1d_dg = paddle.nn.layer.MaxPool1D(
191 192 193 194
                kernel_size=2, stride=None, padding=0)
            result = max_pool1d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

D
Double_V 已提交
195 196 197 198 199
    def check_max_dygraph_return_index_results(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result, index = F.max_pool1d(
200
                input, kernel_size=2, stride=2, padding=0, return_mask=True)
D
Double_V 已提交
201 202 203 204 205 206

            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0])

            self.assertTrue(np.allclose(result.numpy(), result_np))

C
cnn 已提交
207
            max_pool1d_dg = paddle.nn.layer.MaxPool1D(
D
Double_V 已提交
208 209 210 211
                kernel_size=2, stride=None, padding=0)
            result = max_pool1d_dg(input)
            self.assertTrue(np.allclose(result.numpy(), result_np))

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def check_max_dygraph_padding_same(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.max_pool1d(
                input, kernel_size=2, stride=2, padding="SAME")

            result_np = max_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0])

            self.assertTrue(np.allclose(result.numpy(), result_np))

    def check_avg_dygraph_padding_same(self, place):
        with fluid.dygraph.guard(place):
            input_np = np.random.random([2, 3, 32]).astype("float32")
            input = fluid.dygraph.to_variable(input_np)
            result = F.avg_pool1d(
                input, kernel_size=2, stride=2, padding="SAME")

            result_np = avg_pool1D_forward_naive(
                input_np, ksize=[2], strides=[2], paddings=[0])

            self.assertTrue(np.allclose(result.numpy(), result_np))

    def test_pool1d(self):
        for place in self.places:

            self.check_max_dygraph_results(place)
            self.check_avg_dygraph_results(place)
            self.check_max_static_results(place)
            self.check_avg_static_results(place)
            self.check_max_dygraph_padding_same(place)
            self.check_avg_dygraph_padding_same(place)
D
Double_V 已提交
245
            self.check_max_dygraph_return_index_results(place)
246 247


C
cnn 已提交
248
class TestPool2DError_API(unittest.TestCase):
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    def test_error_api(self):
        def run1():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[2]]
                res_pd = F.max_pool1d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run1)

        def run2():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = [[2]]
                res_pd = F.max_pool1d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run2)

        def run3():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "padding"
                res_pd = F.max_pool1d(
                    input_pd, kernel_size=2, stride=2, padding=padding)

        self.assertRaises(ValueError, run3)

        def run4():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = F.max_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True)

        self.assertRaises(ValueError, run4)

        def run5():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = F.max_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True)

        self.assertRaises(ValueError, run5)

        def run6():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "VALID"
                res_pd = F.avg_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True)

        self.assertRaises(ValueError, run6)

        def run7():
            with fluid.dygraph.guard():
                input_np = np.random.uniform(-1, 1,
                                             [2, 3, 32]).astype(np.float32)
                input_pd = fluid.dygraph.to_variable(input_np)
                padding = "paddle"
                res_pd = F.avg_pool1d(
                    input_pd,
                    kernel_size=2,
                    stride=2,
                    padding=padding,
                    ceil_mode=True)

        self.assertRaises(ValueError, run7)


if __name__ == '__main__':
    unittest.main()