attn_bias_add.cu.h 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#else
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

#ifdef __HIPCC__
#define LAUNCH_BOUNDS(BlockDim) __launch_bounds__(BlockDim)
#else
#define LAUNCH_BOUNDS(BlockDim)
#endif

#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/operators/reduce_ops/reduce_functor_op.h"
#include "paddle/fluid/platform/fast_divmod.h"

namespace paddle {
namespace operators {

#define MAX_INPUT_NUM 2

namespace kps = paddle::operators::kernel_primitives;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using ReduceParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T>
55 56
struct AddFunctor {
  inline HOSTDEVICE T operator()(const T& a, const T& b) const { return a + b; }
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
};

template <typename InT, typename OutT, int ShapeSize, int VecSize,
          int DATA_PER_THREAD, typename Functor>
__global__ void BroadcastKernelBinary(
    const InT* __restrict__ in0, const InT* __restrict__ in1, OutT* out,
    framework::Array<bool, MAX_INPUT_NUM> use_broadcast, uint32_t numel,
    framework::Array<kps::details::BroadcastConfig<ShapeSize>, MAX_INPUT_NUM>
        configlists,
    int main_tid, int tail_tid, Functor func) {
  int fix = blockIdx.x * blockDim.x * VecSize;
  int num = tail_tid;
  InT arg0[VecSize * DATA_PER_THREAD];
  InT arg1[VecSize * DATA_PER_THREAD];
  OutT result[VecSize * DATA_PER_THREAD];
  if (blockIdx.x < main_tid) {
    num = blockDim.x * VecSize;  // blockIdx.x < main_tid
  }

  // load in0
  if (use_broadcast[0]) {
    kernel_primitives::ReadDataBc<InT, VecSize, DATA_PER_THREAD, 1, ShapeSize>(
        arg0, in0, fix, configlists[0], numel, 1, 1);
  } else {
    kernel_primitives::ReadData<InT, VecSize, 1, 1>(arg0, in0 + fix, num);
  }
  // load in1
  if (use_broadcast[1]) {
    kernel_primitives::ReadDataBc<InT, VecSize, DATA_PER_THREAD, 1, ShapeSize>(
        arg1, in1, fix, configlists[1], numel, 1, 1);
  } else {
    kernel_primitives::ReadData<InT, VecSize, 1, 1>(arg1, in1 + fix, num);
  }
  // compute
  kernel_primitives::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
      result, arg0, arg1, func);
  // store
  kernel_primitives::WriteData<OutT, VecSize, 1, 1>(out + fix, result, num);
}

// bias add forward impl for "[m, n] + [n] = [m, n]"
template <typename T>
void LaunchBiasAddFwKernel(const platform::CUDADeviceContext& ctx, int m, int n,
                           const T* in0, const T* in1, T* out) {
101 102 103
  int in_vec_size = std::min(platform::GetVectorizedSize<T>(in0),
                             platform::GetVectorizedSize<T>(in1));
  int out_vec_size = std::min(4, platform::GetVectorizedSize<T>(out));
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  int vec_size = std::min(out_vec_size, in_vec_size);

  int numel = m * n;
  const int threads = 256;
  const int data_per_thread = 1;
  int blocks =
      ((numel + vec_size * data_per_thread - 1) / (vec_size * data_per_thread) +
       threads - 1) /
      threads;
  int main_tid = numel / (data_per_thread * vec_size * threads);
  int tail_tid = numel % (data_per_thread * vec_size * threads);

  framework::Array<kps::details::BroadcastConfig<2>, MAX_INPUT_NUM> configlists;
  framework::Array<bool, MAX_INPUT_NUM> use_broadcast;

  use_broadcast[0] = false;
  use_broadcast[1] = false;
  if (m != 1) {
    use_broadcast[1] = true;
  }
  // Here, dims are transposed due to the logic in BroadcastConfig.
  std::vector<int64_t> input1_dims = {n, 1};
  std::vector<int64_t> out_dims = {n, m};
  configlists[1] = kps::details::BroadcastConfig<2>(out_dims, input1_dims, 2);

129
  auto func = AddFunctor<T>();
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  auto stream = ctx.stream();
  switch (vec_size) {
    case 4: {
      BroadcastKernelBinary<T, T, 2, 4,
                            data_per_thread><<<blocks, threads, 0, stream>>>(
          in0, in1, out, use_broadcast, numel, configlists, main_tid, tail_tid,
          func);
      break;
    }
    case 2: {
      BroadcastKernelBinary<T, T, 2, 2,
                            data_per_thread><<<blocks, threads, 0, stream>>>(
          in0, in1, out, use_broadcast, numel, configlists, main_tid, tail_tid,
          func);
      break;
    }
    case 1: {
      BroadcastKernelBinary<T, T, 2, 1,
                            data_per_thread><<<blocks, threads, 0, stream>>>(
          in0, in1, out, use_broadcast, numel, configlists, main_tid, tail_tid,
          func);
      break;
    }
    default: {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}

template <typename T, int BlockDim>
__global__ void LAUNCH_BOUNDS(BlockDim)
    Compute1DColumnReduceKernel(const int reduce_num, const int left_num,
                                const T* in, T* out) {
  typedef cub::BlockReduce<ReduceParamType<T>, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage mean_storage;

  for (int i = blockIdx.x; i < left_num; i += gridDim.x) {
    ReduceParamType<T> x_sum = static_cast<ReduceParamType<T>>(0);
    for (int j = threadIdx.x; j < reduce_num; j += blockDim.x) {
      const int index = j * left_num + i;
      ReduceParamType<T> x_i = static_cast<ReduceParamType<T>>(in[index]);
      x_sum += x_i;
    }
    x_sum = BlockReduce(mean_storage).Reduce(x_sum, cub::Sum());
    if (threadIdx.x == 0) {
      out[i] = static_cast<T>(x_sum);
    }
  }
}

template <typename T>
void Launch1DColumnReduce(gpuStream_t stream, const int max_threads,
                          const int reduce_num, const int left_num,
                          const T* d_out, T* d_bias) {
  const int block = 256;
  const int max_blocks = std::max(max_threads / block, 1);
  const int grid = std::min(left_num, max_blocks);
  Compute1DColumnReduceKernel<T, block><<<grid, block, 0, stream>>>(
      reduce_num, left_num, d_out, d_bias);
}

void SetConfigForColumnReduce(const int max_threads, const int reduce_num,
                              const int left_num, int* blocking_size,
                              bool* should_reduce_again, dim3* block_dim,
                              dim3* grid_dim) {
  block_dim->z = 1;
  grid_dim->z = 1;
  *should_reduce_again = false;

  int num_block = (max_threads / left_num);
  if (num_block > 1 && reduce_num >= REDUCE_SPLIT_BOUNDARY) {
203
    *blocking_size = details::GetLastPow2(reduce_num / num_block);
204
    if (*blocking_size <= 1) {
205
      *blocking_size = details::GetLastPow2(sqrt(reduce_num));
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    } else if (*blocking_size * 2 < reduce_num) {
      *blocking_size *= 2;
    }
    *should_reduce_again = true;
    block_dim->x = 32;
    block_dim->y = 1;
    grid_dim->x = (left_num + block_dim->x - 1) / block_dim->x;
    grid_dim->y = (reduce_num + *blocking_size - 1) / *blocking_size;
  } else {
    block_dim->x = 32;
    *blocking_size = reduce_num;
    grid_dim->x = (left_num + block_dim->x - 1) / block_dim->x;
    grid_dim->y = 1;
  }
}

template <typename T>
__global__ void BiasAddBwSinglePassKernel(const T* in, int reduce_num,
                                          int left_num, T* out) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  ReduceParamType<T> x_sum = static_cast<ReduceParamType<T>>(0);
  if (idx < left_num) {
    for (int iy = 0; iy < reduce_num; iy++) {
      int id = iy * left_num + idx;
      ReduceParamType<T> x_val = static_cast<ReduceParamType<T>>(in[id]);
      x_sum += x_val;
    }
    out[idx] = static_cast<T>(x_sum);
  }
}

template <typename T>
__global__ void BiasAddBw2DReduceKernel(const T* x, int reduce_num,
                                        int left_num, int workload_per_thread,
                                        ReduceParamType<T>* temp_x_sum) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  int idy = blockIdx.y * workload_per_thread;

  T x_val;
  ReduceParamType<T> x_sum = static_cast<ReduceParamType<T>>(0);
  if (idx < left_num) {
    int loop = reduce_num - idy;
    loop = loop > workload_per_thread ? workload_per_thread : loop;
    for (int iy = 0; iy < loop; iy++) {
      int id = (idy + iy) * left_num + idx;
      ReduceParamType<T> x_val = static_cast<ReduceParamType<T>>(x[id]);
      x_sum += x_val;
    }
    temp_x_sum[idx + blockIdx.y * left_num] = x_sum;
  }
}

template <typename T>
__global__ void BiasAddBw1DReduceKernel(const ReduceParamType<T>* temp_sum,
                                        int workload_per_thread, int left_num,
                                        T* out) {
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
  ReduceParamType<T> x_sum = static_cast<ReduceParamType<T>>(0);
  if (idx < left_num) {
    for (int iy = 0; iy < workload_per_thread; iy++) {
      int id = iy * left_num + idx;
      x_sum += temp_sum[id];
    }
    out[idx] = static_cast<T>(x_sum);
  }
}

template <typename T>
void Launch2DColumnReduce(gpuStream_t stream, const int max_threads,
                          const int reduce_num, const int left_num,
                          const T* d_out, T* d_bias) {
  dim3 block;
  dim3 grid;
  bool should_reduce_again = false;
  int blocking_size = 1;
  SetConfigForColumnReduce(max_threads, reduce_num, left_num, &blocking_size,
                           &should_reduce_again, &block, &grid);

  if (!should_reduce_again) {
    BiasAddBwSinglePassKernel<T><<<grid, block, 0, stream>>>(d_out, reduce_num,
                                                             left_num, d_bias);
  } else {
    framework::Tensor tmp_sum;
    tmp_sum.mutable_data<ReduceParamType<T>>(
        framework::make_ddim({static_cast<int64_t>(
            left_num * grid.y * sizeof(ReduceParamType<T>))}),
        paddle::platform::CUDAPlace());

    BiasAddBw2DReduceKernel<T><<<grid, block, 0, stream>>>(
        d_out, reduce_num, left_num, blocking_size,
        tmp_sum.template data<ReduceParamType<T>>());

    BiasAddBw1DReduceKernel<T><<<grid.x, block.x, 0, stream>>>(
        tmp_sum.template data<ReduceParamType<T>>(), grid.y, left_num, d_bias);
  }
}

// bias add backward impl whose pattern are column-reduce with d_out[m, n] as
// input
// and d_bias[n] as output.
template <typename T>
void LaunchBiasAddBwKernel(const platform::CUDADeviceContext& dev_ctx, int m,
                           int n, const T* d_out, T* d_bias) {
  int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  int reduce_num = m;
  int left_num = n;
  bool is_large_enough = (reduce_num > REDUCE_SPLIT_BOUNDARY / 2) ||
                         (left_num > REDUCE_SPLIT_BOUNDARY);
  if (!is_large_enough) {
    Launch1DColumnReduce(dev_ctx.stream(), max_threads, reduce_num, left_num,
                         d_out, d_bias);
  } else {
    Launch2DColumnReduce(dev_ctx.stream(), max_threads, reduce_num, left_num,
                         d_out, d_bias);
  }
}

#undef MAX_INPUT_NUM

}  // namespace operators
}  // namespace paddle