test_conv3d_op.py 29.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

C
chengduoZH 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
from op_test import OpTest
L
liym27 已提交
22
import paddle.fluid as fluid
C
chengduoZH 已提交
23 24


L
liym27 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def conv3d_forward_naive(input,
                         filter,
                         group,
                         conv_param,
                         padding_algorithm='EXPLICIT',
                         data_format="NCDHW"):

    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError("Unknown Attr(data_format): '%s' ."
                         "It can only be 'NCDHW' or 'NDHWC'." %
                         str(data_format))

    channel_last = (data_format == "NDHWC")
    if channel_last:
        input = np.transpose(input, [0, 4, 1, 2, 3])

46
    in_n, in_c, in_d, in_h, in_w = input.shape
L
liym27 已提交
47 48 49 50

    f_n, f_c, f_d, f_h, f_w = filter.shape
    out_n = in_n
    out_c = f_n
51 52
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
M
minqiyang 已提交
53
    sub_out_c = out_c // group
L
liym27 已提交
54
    sub_f_n = f_n // group
55

C
chengduoZH 已提交
56 57 58
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilations']

L
liym27 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    # update pad and dilation
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter.shape[2:5]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0, 0, 0]
    elif padding_algorithm == "SAME":
        dilation = [1, 1, 1]
78
        input_data_shape = input.shape[2:5]
L
liym27 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_d_0, pad_d_1 = pad[0], pad[0]
    pad_h_0, pad_h_1 = pad[1], pad[1]
    pad_w_0, pad_w_1 = pad[2], pad[2]
    if len(pad) == 6:
        pad_d_0, pad_d_1 = pad[0], pad[1]
        pad_h_0, pad_h_1 = pad[2], pad[3]
        pad_w_0, pad_w_1 = pad[4], pad[5]

    out_d = 1 + (in_d + pad_d_0 + pad_d_1 - (dilation[0] *
                                             (f_d - 1) + 1)) // stride[0]
    out_h = 1 + (in_h + pad_h_0 + pad_h_1 - (dilation[1] *
                                             (f_h - 1) + 1)) // stride[1]
    out_w = 1 + (in_w + pad_w_0 + pad_w_1 - (dilation[2] *
                                             (f_w - 1) + 1)) // stride[2]
C
chengduoZH 已提交
95

96 97
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

C
chengduoZH 已提交
98 99 100 101
    d_bolck_d = (dilation[0] * (f_d - 1) + 1)
    d_bolck_h = (dilation[1] * (f_h - 1) + 1)
    d_bolck_w = (dilation[2] * (f_w - 1) + 1)

L
liym27 已提交
102 103
    input_pad = np.pad(input, ((0, 0), (0, 0), (pad_d_0, pad_d_1),
                               (pad_h_0, pad_h_1), (pad_w_0, pad_w_1)),
104 105
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
106

L
liym27 已提交
107
    filter_dilation = np.zeros((f_n, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
C
chengduoZH 已提交
108 109 110
    filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
                    d_bolck_w:dilation[2]] = filter

111 112 113 114 115 116
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
                    input_pad_masked = \
                        input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
117 118 119 120
                        d * stride[0]:d * stride[0] + d_bolck_d,
                        i * stride[1]:i * stride[1] + d_bolck_h,
                        j * stride[2]:j * stride[2] + d_bolck_w]

L
liym27 已提交
121 122
                    f_sub = filter_dilation[g * sub_f_n:(g + 1) *
                                            sub_f_n, :, :, :, :]
123 124 125
                    for k in range(sub_out_c):
                        out[:, g * sub_out_c + k, d, i, j] = \
                            np.sum(input_pad_masked * f_sub[k, :, :, :, :],
C
chengduoZH 已提交
126
                                   axis=(1, 2, 3, 4))
L
liym27 已提交
127 128
    if channel_last:
        out = np.transpose(out, [0, 2, 3, 4, 1])
129 130 131
    return out


L
liym27 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

    cls_name = "{0}_{1}".format(parent.__name__, "CUDNN")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.pad = [0, 0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.pad = [1, 1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


def create_test_channel_last_class(parent):
    class TestChannelLastCase(parent):
        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "ChannelLast")
    TestChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestChannelLastCase


def create_test_cudnn_channel_last_class(parent):
    class TestCudnnChannelLastCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_data_format(self):
            self.data_format = "NDHWC"

        def init_test_case_2(self):
            N, C, D, H, W = self.input_size
            self.input_size = [N, D, H, W, C]

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnChannelLast")
    TestCudnnChannelLastCase.__name__ = cls_name
    globals()[cls_name] = TestCudnnChannelLastCase


C
chengduoZH 已提交
229 230
class TestConv3dOp(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
231
        self.op_type = "conv3d"
232
        self.use_cudnn = False
233 234
        self.use_mkldnn = False
        self.data_format = "AnyLayout"
K
Kexin Zhao 已提交
235 236
        self.dtype = np.float32
        self.init_kernel_type()
237
        self.init_group()
C
chengduoZH 已提交
238
        self.init_dilation()
239 240
        self.init_test_case()

C
chengduoZH 已提交
241 242 243
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
244
            'dilations': self.dilations
C
chengduoZH 已提交
245
        }
K
Kexin Zhao 已提交
246 247 248

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
L
liym27 已提交
249 250 251 252 253
        output = conv3d_forward_naive(
            input,
            filter,
            self.groups,
            conv3d_param, ).astype(self.dtype)
C
chengduoZH 已提交
254

K
Kexin Zhao 已提交
255 256 257 258
        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
C
chengduoZH 已提交
259
        self.attrs = {
260 261
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
262
            'groups': self.groups,
K
Kexin Zhao 已提交
263
            'dilations': self.dilations,
264 265 266
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
C
chengduoZH 已提交
267 268 269
        }
        self.outputs = {'Output': output}

270
    def has_cudnn(self):
271 272
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
273
    def test_check_output(self):
274
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
275
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
276 277
        self.check_output_with_place(
            place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
278 279

    def test_check_grad(self):
K
Kexin Zhao 已提交
280 281
        if self.dtype == np.float16:
            return
282
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
283
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
284
        self.check_grad_with_place(
285 286 287 288
            place, {'Input', 'Filter'},
            'Output',
            max_relative_error=0.03,
            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
289

C
chengduoZH 已提交
290
    def test_check_grad_no_filter(self):
K
Kexin Zhao 已提交
291 292
        if self.dtype == np.float16:
            return
293
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
294
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
295 296 297 298
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
299 300
            no_grad_set=set(['Filter']),
            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
301 302

    def test_check_grad_no_input(self):
K
Kexin Zhao 已提交
303 304
        if self.dtype == np.float16:
            return
305
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
306
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
307
        self.check_grad_with_place(
308
            place, ['Filter'],
309 310
            'Output',
            max_relative_error=0.03,
311 312
            no_grad_set=set(['Input']),
            check_dygraph=(self.use_mkldnn == False))
C
chengduoZH 已提交
313

314 315 316
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
317
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
318
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
319
        f_c = self.input_size[1] // self.groups
320 321
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
322 323 324
    def init_test_case_2(self):
        pass

C
chengduoZH 已提交
325 326 327
    def init_dilation(self):
        self.dilations = [1, 1, 1]

328
    def init_group(self):
C
chengduoZH 已提交
329 330
        self.groups = 1

K
Kexin Zhao 已提交
331 332
    def init_kernel_type(self):
        pass
333

C
chengduoZH 已提交
334

C
chengduoZH 已提交
335 336 337 338
class TestCase1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
339
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
340
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
341
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
342 343 344
        self.filter_size = [6, f_c, 3, 3, 3]


C
chengduoZH 已提交
345 346 347
class TestWithGroup1(TestConv3dOp):
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
348 349


C
chengduoZH 已提交
350
class TestWithGroup2(TestCase1):
351
    def init_group(self):
C
chengduoZH 已提交
352 353
        self.groups = 3

354

C
chengduoZH 已提交
355 356 357 358
class TestWith1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
359
        self.input_size = [2, 3, 4, 4, 4]
C
chengduoZH 已提交
360
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
361
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
362 363 364 365
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
366

C
chengduoZH 已提交
367 368 369
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
370

371 372 373 374
class TestWithInput1x1Filter1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
375
        self.input_size = [2, 3, 1, 1, 1]
376
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
377
        f_c = self.input_size[1] // self.groups
378 379 380 381 382 383 384 385 386
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3


C
chengduoZH 已提交
387 388 389 390
class TestWithDilation(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
L
liym27 已提交
391
        self.input_size = [2, 3, 6, 6, 6]
C
chengduoZH 已提交
392
        assert np.mod(self.input_size[1], self.groups) == 0
M
minqiyang 已提交
393
        f_c = self.input_size[1] // self.groups
C
chengduoZH 已提交
394 395 396 397 398 399 400
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
401

C
chengduoZH 已提交
402

L
liym27 已提交
403 404 405
#---------------- Conv3dCUDNN ----------------


406
class TestCUDNN(TestConv3dOp):
K
Kexin Zhao 已提交
407
    def init_kernel_type(self):
408
        self.use_cudnn = True
K
Kexin Zhao 已提交
409 410 411 412 413 414 415 416 417 418 419 420


class TestFP16CUDNN(TestConv3dOp):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
421 422


423
class TestWithGroup1CUDNN(TestWithGroup1):
K
Kexin Zhao 已提交
424
    def init_kernel_type(self):
425
        self.use_cudnn = True
K
Kexin Zhao 已提交
426 427 428 429 430 431 432 433 434 435 436 437


class TestFP16WithGroup1CUDNN(TestWithGroup1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
438 439


440
class TestWithGroup2CUDNN(TestWithGroup2):
K
Kexin Zhao 已提交
441
    def init_kernel_type(self):
442
        self.use_cudnn = True
K
Kexin Zhao 已提交
443 444 445 446 447 448 449 450 451 452 453 454


class TestFP16WithGroup2CUDNN(TestWithGroup2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
455 456


457
class TestWith1x1CUDNN(TestWith1x1):
K
Kexin Zhao 已提交
458
    def init_kernel_type(self):
459
        self.use_cudnn = True
K
Kexin Zhao 已提交
460 461 462 463 464 465 466 467 468 469 470 471


class TestFP16With1x1CUDNN(TestWith1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
武毅 已提交
472 473


474
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
K
Kexin Zhao 已提交
475
    def init_kernel_type(self):
476
        self.use_cudnn = True
K
Kexin Zhao 已提交
477 478 479 480 481 482 483 484 485 486 487 488


class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-2)
489 490


491 492 493 494 495 496
class TestCUDNNExhaustiveSearch(TestCUDNN):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.exhaustive_search = True


L
liym27 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
# ---- test asymmetric padding ----


class TestConv3dOp_2(OpTest):
    def setUp(self):
        self.op_type = "conv3d"
        self.use_cudnn = False
        self.use_mkldnn = False
        self.data_format = "NCDHW"
        self.dtype = np.float32
        self.init_kernel_type()
        self.init_group()
        self.init_dilation()
        self.init_data_format()
        self.init_test_case()
        self.init_paddings()

        self.init_test_case_2()

        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
            'dilations': self.dilations
        }

        input = np.random.random(self.input_size).astype(self.dtype)
        filter = np.random.random(self.filter_size).astype(self.dtype)
        output = conv3d_forward_naive(input, filter, self.groups, conv3d_param,
                                      self.padding_algorithm,
                                      self.data_format).astype(self.dtype)

        self.inputs = {
            'Input': OpTest.np_dtype_to_fluid_dtype(input),
            'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
        }
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
            'padding_algorithm': self.padding_algorithm,
            'groups': self.groups,
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
        }
        self.outputs = {'Output': output}

    def has_cudnn(self):
        return core.is_compiled_with_cuda() and self.use_cudnn

    def test_check_output(self):
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_output_with_place(place, atol=1e-5)

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, {'Input', 'Filter'}, 'Output', max_relative_error=0.03)

    def test_check_grad_no_filter(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
            place, ['Input'],
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Filter']))

    def test_check_grad_no_input(self):
        if self.dtype == np.float16:
            return
        place = core.CUDAPlace(0) if self.has_cudnn() else core.CPUPlace()
        self.check_grad_with_place(
573
            place, ['Filter'],
L
liym27 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
            'Output',
            max_relative_error=0.03,
            no_grad_set=set(['Input']))

    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_test_case_2(self):
        pass

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 1

    def init_kernel_type(self):
        pass

    def init_paddings(self):
        self.pad = [0, 0, 0]
        self.padding_algorithm = "EXPLICIT"

    def init_data_format(self):
        self.data_format = "NCDHW"


class TestConv3dOp_AsyPadding(TestConv3dOp_2):
606 607 608 609 610 611 612
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

L
liym27 已提交
613 614 615 616 617
    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
class TestConv3dOp_DiffDataInDiffDim(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 2]
        self.input_size = [2, 3, 4, 5, 5]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 4, 3]

    def init_paddings(self):
        self.pad = [1, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


create_test_padding_SAME_class(TestConv3dOp_DiffDataInDiffDim)
create_test_padding_VALID_class(TestConv3dOp_DiffDataInDiffDim)
create_test_channel_last_class(TestConv3dOp_DiffDataInDiffDim)


L
liym27 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
class TestCase1_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWithGroup1_AsyPadding(TestConv3dOp_2):
    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWithGroup2_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [1, 1, 0, 1, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWith1x1_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 0, 2]
        self.padding_algorithm = "EXPLICIT"


class TestWithDilation_AsyPadding(TestConv3dOp_2):
    def init_test_case(self):
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3

    def init_paddings(self):
        self.pad = [0, 0, 1, 0, 1, 0]
        self.padding_algorithm = "EXPLICIT"


create_test_cudnn_class(TestConv3dOp_AsyPadding)
create_test_cudnn_class(TestWithGroup1_AsyPadding)
create_test_cudnn_class(TestWithGroup2_AsyPadding)
create_test_cudnn_class(TestWith1x1_AsyPadding)
create_test_cudnn_class(TestWithDilation_AsyPadding)

create_test_padding_SAME_class(TestConv3dOp_AsyPadding)
create_test_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_padding_SAME_class(TestWith1x1_AsyPadding)

create_test_padding_VALID_class(TestConv3dOp_AsyPadding)
create_test_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_padding_VALID_class(TestWith1x1_AsyPadding)

create_test_cudnn_padding_SAME_class(TestConv3dOp_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_SAME_class(TestWith1x1_AsyPadding)

create_test_cudnn_padding_VALID_class(TestConv3dOp_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWithGroup1_AsyPadding)
create_test_cudnn_padding_VALID_class(TestWith1x1_AsyPadding)

create_test_channel_last_class(TestConv3dOp_AsyPadding)
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

create_test_channel_last_class(TestConv3dOp_AsyPadding)
create_test_channel_last_class(TestWithGroup1_AsyPadding)
create_test_channel_last_class(TestWith1x1_AsyPadding)

create_test_cudnn_channel_last_class(TestConv3dOp_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

create_test_cudnn_channel_last_class(TestConv3dOp_AsyPadding)
create_test_cudnn_channel_last_class(TestWithGroup1_AsyPadding)
create_test_cudnn_channel_last_class(TestWith1x1_AsyPadding)

武毅 已提交
750 751
# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
752
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
753
#     def init_op_type(self):
754
#         self.op_type = "conv3d"
武毅 已提交
755

L
liym27 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

# --------- test python API ---------------
class TestConv3dAPI(OpTest):
    def test_api(self):

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        fluid.layers.conv3d(
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=0,
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[1, 2, 1, 0, 1, 0],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NDHWC,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            dilation=[1, 1, 1],
            groups=1,
            data_format="NDHWC")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="SAME",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")

        fluid.layers.conv3d(
            input=input_NCDHW,
            num_filters=3,
            filter_size=[3, 3, 3],
            stride=[1, 1, 1],
            padding="VALID",
            dilation=[1, 1, 1],
            groups=1,
            data_format="NCDHW")


class TestConv3dAPI_Error(OpTest):
    def test_api(self):
        input = fluid.layers.data(
            name="input",
            shape=[2, 5, 5, 5, 4],
            append_batch_size=False,
            dtype="float32")

        # ValueError: cudnn
        def run_1():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=[0],
                data_format="NCDHW")

        self.assertRaises(ValueError, run_1)

        # ValueError: data_format
        def run_2():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=[3, 3, 3],
                stride=[1, 1, 1],
                padding=0,
                dilation=[1, 1, 1],
                groups=1,
                use_cudnn=False,
                data_format="NCHWC")

        self.assertRaises(ValueError, run_2)

        # ValueError: padding
        def run_3():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding="SAMEE",
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW")

        self.assertRaises(ValueError, run_3)

        def run_4():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=[[0, 1], [0, 0], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NCDHW")

        self.assertRaises(ValueError, run_4)

        def run_5():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=0,
                stride=0,
                padding=[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1]],
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)

        # ValueError: channel dimmention
        x = fluid.layers.data(
            name="x",
            shape=[2, 5, 5, 5, -1],
            append_batch_size=False,
            dtype="float32")

        def run_6():
            fluid.layers.conv3d(
                input=x,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=1,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_6)

        # ValueError: groups
        def run_7():
            fluid.layers.conv3d(
                input=input,
                num_filters=3,
                filter_size=3,
                stride=1,
                padding=0,
                dilation=1,
                groups=3,
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_7)


C
chengduoZH 已提交
952 953
if __name__ == '__main__':
    unittest.main()