optimization_tuner.py 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import copy
import shlex
import pathlib
import time
import shutil
import pickle
import json
import logging
import subprocess
import traceback

import paddle
from paddle.fluid import program_guard
from paddle.fluid.backward import append_backward
from paddle.distributed.passes import new_pass, PassContext
from paddle.distributed.utils import get_logger

from paddle.distributed.auto_parallel.dist_context import DistributedContext, get_default_distributed_context
from paddle.distributed.auto_parallel.completion import Completer
from paddle.distributed.auto_parallel.reshard import Resharder
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.process_group import clear_all_process_groups, get_all_process_groups
from paddle.distributed.auto_parallel.utils import debug_program
from paddle.distributed.auto_parallel.utils import make_data_unshard, set_grad_var_shape

from .config import TuningConfig
from .algorithms import new_algorithm
from .trial import TrialStatus


def _get_new_params_grads(target_program, ref_program, ref_params_grads):
    ref_block = ref_program.global_block()
    target_block = target_program.global_block()
    target_params_grads = []

    for p, g in ref_params_grads:
        # NOTE grad var might not be generated
        assert ref_block.has_var(p.name)
        assert target_block.has_var(p.name)
        new_p = target_block.var(p.name)
        if g:
            new_g = target_block.var(g.name)
        else:
            new_g = None

        target_params_grads.append((new_p, new_g))

    return target_params_grads


def _get_new_loss(target_program, ref_program, loss):
    ref_block = ref_program.global_block()
    target_block = target_program.global_block()
    assert ref_block.has_var(loss.name)

    return target_block.var(loss.name)


def parse_process_groups():
    group_map = {}
    all_process_groups = get_all_process_groups()
    for process_group in all_process_groups:
        group_map[process_group.id] = process_group.ranks
    return group_map


def get_metric(results):
    assert isinstance(
        results,
        dict), "results should be type of dictionary, but got {}.".format(
            type(results))
    if 'Throughtput' in results and isinstance(results['Throughtput'], float):
        return float(results['Throughtput'])
    else:
        return -1.0


def parse_results(results):
    if results['Throughtput'] > 0:
        return "Throughtput: {} step / s.".format(results['Throughtput'])
    et = results.get("ErrorType", None)
    if et == "ResourceExhaustedError":
        return "Fail with OOM"
    else:
        return "Fail with UNKWON ERROR"


# TODO only dependent on dist context
# all env need to be start a new pass are member of dist context
def _copy_context(ref_dist_context):

    clear_all_process_groups()

    new_dist_context = DistributedContext()
    new_dist_context._serial_main_program = ref_dist_context.serial_main_program.clone(
        for_test=False)
    new_dist_context._serial_startup_program = ref_dist_context.serial_startup_program.clone(
        for_test=False)

    # mapping variable into new dist context
    if getattr(ref_dist_context, '_params_grads', None):
        new_dist_context._params_grads = _get_new_params_grads(
            new_dist_context.serial_main_program,
            ref_dist_context.serial_main_program,
            ref_dist_context._params_grads)
    new_dist_context._serial_loss = _get_new_loss(
        new_dist_context.serial_main_program,
        ref_dist_context.serial_main_program, ref_dist_context.serial_loss)

    for key, var_list in ref_dist_context._serial_feed_vars.items():
        new_var_list = []
        for var in var_list:
            block_idx = var.block.idx
            var_name = var.name
            var = new_dist_context._serial_main_program.blocks[
                block_idx]._var_recursive(var_name)
            new_var_list.append(var)
        new_dist_context._serial_feed_vars[key] = new_var_list

    for key, var_list in ref_dist_context._serial_fetch_vars.items():
        new_var_list = []
        for var in var_list:
            block_idx = var.block.idx
            var_name = var.name
            var = new_dist_context._serial_main_program.blocks[
                block_idx]._var_recursive(var_name)
            new_var_list.append(var)
        new_dist_context._serial_fetch_vars[key] = new_var_list

    # copy information in forward and backward
    new_dist_context._serial_optimizer = copy.deepcopy(
        ref_dist_context.serial_optimizer)
    new_dist_context._dist_tensors_for_program = copy.deepcopy(
        ref_dist_context._dist_tensors_for_program)
    new_dist_context._dist_ops_for_program = copy.deepcopy(
        ref_dist_context._dist_ops_for_program)
    for pm in ref_dist_context.process_meshes:
        new_dist_context.add_process_mesh(pm)
    new_dist_context._dist_op_context = copy.deepcopy(
        ref_dist_context._dist_op_context)
    new_dist_context._block_state = copy.deepcopy(ref_dist_context.block_state)

    return new_dist_context


class OptimizationTuner:
    """
    OptimizationTuner is used to manage the tuning procedure of hyper-parameters (configs) 
    of Optimization Pass in AutoParallel.
    """

    def __init__(
        self,
        user_configs,
        dist_context,
        dataset,
        inputs_spec,
        labels_spec,
        batch_size,
        rank,
    ):

        self._config = TuningConfig(user_configs, dist_context._strategy)
        # should not modify dist context from calling function
        self._baseline_dist_context = _copy_context(dist_context)
        self._baseline_completer = Completer(self._baseline_dist_context)

        self._rank = rank
        self._inputs_spec = inputs_spec
        self._labels_spec = labels_spec
        self._dataset = dataset
        self._batch_size = batch_size

        self._finished_trials = []
        self._best_metric = None
        self._best_iter = float("-inf")

        self._logger = get_logger(logging.INFO)

        self._build_programs_without_optimization()
        self._select_tuning_algorithm()

    @property
    def project_dir(self):
        dirname = self._config.project_dir
        if not os.path.exists(dirname):
            if self.rank == 0:
                pathlib.Path(dirname).mkdir(parents=True, exist_ok=True)
        return dirname

    @property
    def rank(self):
        return self._rank

    @property
    def device_id(self):
        return paddle.distributed.ParallelEnv().device_id

    # TODO Generate compelet program with all parts like forward, backward, update
    # as well as parallelism transformation.
    def _build_programs_without_optimization(self):

        serial_main_program = self._baseline_dist_context.serial_main_program
        serial_startup_program = self._baseline_dist_context.serial_startup_program
        serial_loss = self._baseline_dist_context.serial_loss

        with program_guard(serial_main_program, serial_startup_program):
            params_grads = append_backward(
                serial_loss,
                distop_context=self._baseline_dist_context.dist_op_context)

        self._baseline_completer.complete_backward_annotation(
            serial_main_program)
        self._baseline_dist_context.block_state.parse_backward_blocks(
            serial_main_program)
        self._baseline_dist_context._params_grads = params_grads

        if self._config.verbose:
            baseline_dir = os.path.join(self.project_dir, "baseline")
            if not os.path.exists(baseline_dir):
                pathlib.Path(baseline_dir).mkdir(parents=True, exist_ok=True)
            debug_program(self._baseline_dist_context._serial_main_program,
                          baseline_dir, "main")
            debug_program(self._baseline_dist_context._serial_startup_program,
                          baseline_dir, "startup")

    def _select_tuning_algorithm(self):

        selected_passes_set = self._config.tuning_passes_name
        algorithm_name = "_".join(sorted(selected_passes_set))
        self._algorithm = new_algorithm(algorithm_name, self._config)

    def _apply_optimization(self, trial):
        new_strategy = trial.space
        dist_context = _copy_context(self._baseline_dist_context)
        pass_context = PassContext()
        completer = Completer(dist_context)

        main_program = dist_context.serial_main_program
        startup_program = dist_context.serial_startup_program

        # applying optimization pass
        if new_strategy.amp:
            config = copy.deepcopy(new_strategy.amp_configs)
            config["dist_context"] = dist_context
            config["params_grads"] = dist_context._params_grads

            # TODO AMP Pass should not use loss var
            config["loss"] = dist_context.serial_loss
            config["input_data"] = self._baseline_dist_context.serial_feed_vars["inputs"] \
                + self._baseline_dist_context.serial_feed_vars["labels"]
            if config["use_pure_fp16"]:
269
                config["base_opt"] = dist_context.serial_optimizer
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                auto_parallel_fp16_pass = new_pass("auto_parallel_fp16", config)
                auto_parallel_fp16_pass.apply([main_program], [startup_program],
                                              pass_context)
            else:
                auto_parallel_amp_pass = new_pass("auto_parallel_amp", config)
                auto_parallel_amp_pass.apply([main_program], [startup_program],
                                             pass_context)

        if new_strategy.recompute:
            config = copy.deepcopy(new_strategy.recompute_configs)
            config["dist_context"] = dist_context
            config["no_grad_set"] = None
            config["loss"] = dist_context.serial_loss
            auto_parallel_recompute_pass = new_pass("auto_parallel_recompute",
                                                    config)
            auto_parallel_recompute_pass.apply([main_program],
                                               [startup_program], pass_context)

        # Do logical partition
        partitioner = Partitioner(dist_context, self.rank)
        dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
            main_program, startup_program, dist_context._params_grads)

        # Generate optimizer
        # FIXME should be remove from apply pass after pass support optimizers
        with program_guard(dist_main_prog, dist_startup_prog):
            optimizer_ops = dist_context.serial_optimizer.apply_gradients(
                dist_params_grads)
        completer.complete_update_annotation(dist_main_prog)

        # Do reshard process
        set_grad_var_shape(dist_main_prog, dist_context)
        resharder = Resharder(dist_main_prog, dist_startup_prog, self.rank,
                              dist_context, dist_params_grads)
        resharder.reshard()

        if new_strategy.sharding:
            config = copy.deepcopy(new_strategy.sharding_configs)
            config["dist_context"] = dist_context
            config["params_grads"] = dist_params_grads
            config["global_rank"] = self.rank
            auto_parallel_sharding_pass = new_pass("auto_parallel_sharding",
                                                   config)
            auto_parallel_sharding_pass.apply([dist_main_prog],
                                              [dist_startup_prog], pass_context)

        if new_strategy.gradient_merge:
            config = copy.deepcopy(new_strategy.gradient_merge_configs)
            config["dist_context"] = dist_context
            config["params_grads"] = dist_params_grads
            auto_parallel_gradient_merge_pass = new_pass(
                "auto_parallel_gradient_merge_pass", config)
            auto_parallel_gradient_merge_pass.apply([dist_main_prog],
                                                    [dist_startup_prog],
                                                    pass_context)
        trial.main_program, trial.startup_program = dist_main_prog, dist_startup_prog
        return trial

    def _get_profile_context(self, trial, result_path):

        profile_ctx = {}

        profile_ctx['distributed_env'] = copy.deepcopy(
            paddle.distributed.ParallelEnv())
        profile_ctx['group_map'] = parse_process_groups()
        profile_ctx[
            "loss_var_name"] = self._baseline_dist_context.serial_loss.name
        profile_ctx[
            "main_program_decs"] = trial.main_program.desc.serialize_to_string(
            )
        profile_ctx[
            "startup_program_decs"] = trial.startup_program.desc.serialize_to_string(
            )
        self._dataset.batch_size = self._batch_size
        self._dataset.input_names = self._get_input_names()

        profile_ctx["dataset"] = self._dataset
        profile_ctx["result_filename"] = result_path

        return profile_ctx

    def _get_input_names(self):
        input_names = []
        for input_spec in self._inputs_spec[:] + self._labels_spec[:]:
            input_names.append(input_spec.name)
        return input_names

    def _launch_profile(self, ctx_path, trial_dir):

        if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
            coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
        else:
            coverage_args = []

        profile_args = " ".join([
            "--rank",
366 367 368 369 370
            str(self.rank), "--device_id",
            str(self.device_id), "--ctx_filename", ctx_path,
            "--profile_start_step",
            str(self._config.profile_start_step), "--profile_end_step",
            str(self._config.profile_end_step)
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
        ])
        cmd_args = "-m paddle.distributed.auto_parallel.tuner.profiler" + " " + profile_args
        cmd = [sys.executable, "-u"] + coverage_args + shlex.split(cmd_args)

        parent_env = copy.copy(os.environ.copy())
        # env flags need for profile
        new_env = {
            "FLAGS_USE_STANDALONE_EXECUTOR": "False",
        }
        new_env.update(parent_env)

        # TODO if any rank hang or fail, kill all processes
        self._logger.debug("Executing cmd:\n{} .".format(" ".join(cmd)))
        # new_process = subprocess.Popen(cmd, env=new_env)
        with open(os.path.join(trial_dir, "stdout.log" + str(self.rank)),
                  "wb") as out, open(
                      os.path.join(trial_dir, "stderr.log" + str(self.rank)),
                      "wb") as err:
            result = subprocess.Popen(cmd, stdout=out, stderr=err, env=new_env)
            result.wait()
            out.flush()
            err.flush()
            os.fsync(out)
            os.fsync(err)

    def _profile_trial(self, trial):
        # Making working directory
        trial_dir = self._get_trial_dir(trial)
        if not os.path.exists(trial_dir):
            if self.rank == 0:
                pathlib.Path(trial_dir).mkdir(parents=True, exist_ok=True)
            else:
                while not os.path.exists(trial_dir):
                    pass
        ctx_filename = "profile_ctx." + str(self.rank)
        ctx_path = os.path.join(trial_dir, ctx_filename)
        result_path = os.path.join(trial_dir, "result.json")

        # Prepare Profile Context
        profile_ctx = self._get_profile_context(trial, result_path)
        with open(ctx_path, 'wb') as f:
            pickle.dump(profile_ctx, f, protocol=4)

        if self._config.verbose:
            debug_program(trial.main_program, trial_dir, "main_program")
            debug_program(trial.startup_program, trial_dir, "startup_program")

        # Run
        self._launch_profile(ctx_path, trial_dir)

        # Load results
        try:
            with open(result_path, 'r') as fp:
                results = json.load(fp)
            return results
        except FileNotFoundError:
            Error_results = {"Throughtput": -1, "ErrorType": 'FatalError'}
            return Error_results

    def _evaluate_trial(self, trial):

        self._logger.info("Trial {} evaluation start.".format(trial.name))
        self._apply_optimization(trial)

        if self._config.mode == "PROFILE":
            results = self._profile_trial(trial)

        elif self._config.mode == "COSTMODEL":
            raise NotImplementedError(
                "COSTMODEL mode for optimization tuning is not supported yet!")
        else:
            raise NotImplementedError("invalid evaluation mode: {}".format(
                self._config.mode))

        self._logger.info("Trial {} evaluation finish with {}.".format(
            trial.name, parse_results(results)))
        return results

    def _update(self, i, trial, results):
        self._finished_trials.append(trial)

        cur_mertic = get_metric(results)
        if self._best_metric == None or cur_mertic > self._best_metric:
            self._best_metric = cur_mertic
            self._best_iter = i

    def _get_trial_dir(self, trial):
        return os.path.join(self.project_dir, trial.name)

    def get_best_config(self):
        """
        Return the best optimization configuration found in the tuning.

        Returns:
            A object of fleet.DistributedStrategy with best configuration.       
        """
        assert self._best_iter >= 0, "The best configuration is not found yet !"
        best_trial = self._finished_trials[self._best_iter]
        return self._algorithm.get_config_from_trial(best_trial)

    def summary(self):
        """
        Display tuning result summary.
        """
        # TODO summary with the trial_name with metric_of_trial
        best_trial = self._finished_trials[self._best_iter]
        summary_ = """
Tuning Result Summary
Run total {} trials with {} min.
The best trial is: [{}], whose configuration is following: 
        """.format(len(self._finished_trials),
                   (time.time() - self._tuning_start_time) / 60,
                   best_trial.name)
        summary_ += "\n" + best_trial.summary() + "\n"\

        self._logger.info(summary_)
        with open(os.path.join(self.project_dir, "summary.txt"), "w+") as fw:
            for line in summary_.split("\n"):
                fw.write(line + "\n")

        full_strategy = self.get_best_config()
        full_strategy.save_to_prototxt(
            os.path.join(self.project_dir, "tuned_dist_strategy.prototxt"))

    def clear(self):
        """
        Clear the temporary file generated in tuning procedure.
        """
        # TODO clear up zombie process created by tuning
        if not self._config.verbose:
            for trial in self._finished_trials:
                trial_dir = self._get_trial_dir(trial)
                shutil.rmtree(trial_dir, ignore_errors=True)

    def tune(self):
        """
        Performs the search for best hyperparameter configuations 
        for the selected optimization pass(es). 
        """

        # step1: collect model info which might be used for
        # pruning the search space of the algorithm
        self._tuning_start_time = time.time()
        self._algorithm.collect_model_info(
            self._baseline_dist_context.serial_main_program,
            self._baseline_dist_context.serial_startup_program)

        # main search loop
        i = 0
        while i < self._config.max_num_trial:
            # step2: create a new trial
            trial = self._algorithm.next_trial()

            if trial.status == TrialStatus.STOPPED:
                break

            # step3: evaluate the trial
            results = self._evaluate_trial(trial)

            # step4: update the algorithm with last result,
            # which could be used by algorithm to pruning the
            # remaining search space.
            self._algorithm.update(results)
            self._update(i, trial, results)

            # early stop
            i += 1
            if self._config.early_stop and self._config.early_stop <= i - self._best_iter:
                self._logger.info(
                    "Early stop the Tuning since there is no better trial found within [{}] trials"
                    .format(self._config.early_stop))
                break

        # step5: summary the best config and return
        self.summary()

        self.clear()