CrossMapNormalOp.cpp 9.9 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hedaoyuan 已提交
15
#include "CrossMapNormalOp.h"
H
hedaoyuan 已提交
16
#include "paddle/math/Vector.h"
H
hedaoyuan 已提交
17 18 19

namespace paddle {

H
hedaoyuan 已提交
20
template <>
H
hedaoyuan 已提交
21 22
void CrossMapNormal<DEVICE_TYPE_CPU>(real* outputs,
                                     real* denoms,
H
hedaoyuan 已提交
23
                                     const real* inputs,
H
hedaoyuan 已提交
24 25 26 27 28 29 30 31 32 33 34
                                     size_t numSamples,
                                     size_t channels,
                                     size_t height,
                                     size_t width,
                                     size_t size,
                                     real scale,
                                     real pow) {
  size_t oneImage = height * width;
  size_t oneSample = channels * oneImage;

  CpuVector outputsV(numSamples * oneSample, outputs);
H
hedaoyuan 已提交
35
  CpuVector inputsV(numSamples * oneSample, const_cast<real*>(inputs));
H
hedaoyuan 已提交
36 37
  CpuVector denomsV(numSamples * oneSample, denoms);

H
hedaoyuan 已提交
38 39 40 41
  // f(x) = x * ( 1 + scale * SUM((x)^2) )^(-pow)
  // x represents inputs
  // f(x) represents outputs
  // denoms save the intermediate result for backward
H
hedaoyuan 已提交
42 43 44 45 46
  denomsV = denomsV.constant(1.0);
  const int start = -((int)size - 1) / 2;
  const int end = (int)size + start;
  for (size_t i = 0; i < numSamples; i++) {
    real* oneDenom = denoms + i * oneSample;
H
hedaoyuan 已提交
47
    real* oneInput = const_cast<real*>(inputs) + i * oneSample;
H
hedaoyuan 已提交
48
    for (int c = 0; c < (int)channels; c++) {
H
hedaoyuan 已提交
49
      CpuVector denom(oneImage, oneDenom + c * oneImage);
H
hedaoyuan 已提交
50 51
      for (int s = start; s < end; s++) {
        if (c + s >= 0 && c + s < (int)channels) {
H
hedaoyuan 已提交
52
          CpuVector input(oneImage, oneInput + (c + s) * oneImage);
H
hedaoyuan 已提交
53 54 55 56 57
          denom += input.square() * scale;
        }
      }
    }
  }
H
hedaoyuan 已提交
58 59

  outputsV = inputsV * denomsV.pow(-pow);
H
hedaoyuan 已提交
60 61
}

H
hedaoyuan 已提交
62
template <>
H
hedaoyuan 已提交
63
void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
H
hedaoyuan 已提交
64 65 66 67
                                         const real* inputsValue,
                                         const real* outputsValue,
                                         const real* outputsGrad,
                                         const real* denoms,
H
hedaoyuan 已提交
68 69 70 71 72 73 74 75
                                         size_t numSamples,
                                         size_t channels,
                                         size_t height,
                                         size_t width,
                                         size_t size,
                                         real scale,
                                         real pow) {
  size_t oneSample = channels * height * width;
H
hedaoyuan 已提交
76 77
  std::function<CpuVector(real*, size_t)> oneImage = [=](real* data,
                                                         size_t offset) {
H
hedaoyuan 已提交
78
    return CpuVector(height * width, data + offset);
H
hedaoyuan 已提交
79 80
  };

H
hedaoyuan 已提交
81 82
  const int start = -((int)size) / 2;
  const int end = (int)size + start;
H
hedaoyuan 已提交
83
  const real ratio = -(real)2 * scale * pow;
H
hedaoyuan 已提交
84 85 86
  for (size_t i = 0; i < numSamples; i++) {
    size_t sOffset = i * oneSample;
    real* oneInputGrad = inputsGrad + sOffset;
H
hedaoyuan 已提交
87 88 89 90
    real* oneInputValue = const_cast<real*>(inputsValue) + sOffset;
    real* oneDenom = const_cast<real*>(denoms) + sOffset;
    real* oneOutputGrad = const_cast<real*>(outputsGrad) + sOffset;
    real* oneOutputValue = const_cast<real*>(outputsValue) + sOffset;
H
hedaoyuan 已提交
91 92

    for (int c = 0; c < (int)channels; c++) {
H
hedaoyuan 已提交
93 94 95 96 97
      size_t cOffset = c * height * width;
      CpuVector inputGrad = oneImage(oneInputGrad, cOffset);
      CpuVector inputValue = oneImage(oneInputValue, cOffset);
      CpuVector denom = oneImage(oneDenom, cOffset);
      CpuVector outputGrad = oneImage(oneOutputGrad, cOffset);
H
hedaoyuan 已提交
98 99 100 101

      inputGrad = inputGrad + denom.pow(-pow) * outputGrad;
      for (int s = start; s < end; s++) {
        if (c + s >= 0 && c + s < (int)channels) {
H
hedaoyuan 已提交
102 103 104 105
          size_t offset = (c + s) * height * width;
          CpuVector output = oneImage(oneOutputValue, offset);
          CpuVector outputGrad = oneImage(oneOutputGrad, offset);
          CpuVector denom = oneImage(oneDenom, offset);
H
hedaoyuan 已提交
106 107 108 109 110 111 112 113

          inputGrad += ((outputGrad * output * ratio) / denom) * inputValue;
        }
      }
    }
  }
}

H
hedaoyuan 已提交
114
/**
115
 * \brief Normalization with across maps.
116
 *
117 118 119 120 121 122 123 124 125 126 127 128
 * This Function comes from the paper
 * "ImageNet Classification with Deep Convolutional Neural Networks".
 *
 * The original formula is:
 *
 *                                 Input(x, y)
 * Output(x, y) = ------------------------------------------------
 *                       alpha   /min(F, f-[N/2] + N)
 *                  (1 + ----- * |    (Input(x, y))^2 ) ^ (beta)
 *                         N     /max(0, f-[N/2])
 *
 * Argument in the Function:
129 130 131 132 133
 * Input is NCHW format, while input.shape.ndims() is equal 4.
 * And the meaning of each dimension(0-3) is respectively batch size,
 * feature maps, rows and columns.
 * The above formula is for each image.
 *
134 135 136 137 138 139 140 141 142
 * \param size_      represent N
 * \param scale_     represent alpha / N
 * \param pow_       represent beta
 * \param inputs[0]  represent Input
 * \param outputs[0] represent Output
 * \param outputs[1] represent The denominator in the formula(except beta)
 *
 * note:
 * Save output[1] is to simplify the backward calculation.
143
 * TODO, if only consider the forward calculation, we can optimize to
144
 * remove the output[1].
H
hedaoyuan 已提交
145
 */
H
hedaoyuan 已提交
146 147 148 149 150 151 152 153 154
template <DeviceType Device>
class CrossMapNormalFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    size_ = config.get<size_t>("size");
    scale_ = config.get<real>("scale");
    pow_ = config.get<real>("pow");
  }

155
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
156 157
    CHECK_EQ((size_t)1, inputs.size());
    CHECK_EQ((size_t)2, outputs.size());
H
hedaoyuan 已提交
158

H
hedaoyuan 已提交
159
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)4);
H
hedaoyuan 已提交
160 161
    CHECK(inputs[0].shape() == outputs[0].shape());
    CHECK(inputs[0].shape() == outputs[1].shape());
162

163 164
    CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
    CHECK_EQ(outputs[1].getArgType(), ASSIGN_TO);
H
hedaoyuan 已提交
165 166 167 168
    size_t samples = inputs[0].shape()[0];
    size_t channels = inputs[0].shape()[1];
    size_t height = inputs[0].shape()[2];
    size_t width = inputs[0].shape()[3];
169

H
hedaoyuan 已提交
170 171 172
    CrossMapNormal<Device>(outputs[0].data<real>(),
                           outputs[1].data<real>(),
                           inputs[0].data<real>(),
H
hedaoyuan 已提交
173 174 175 176 177 178 179
                           samples,
                           channels,
                           height,
                           width,
                           size_,
                           scale_,
                           pow_);
H
hedaoyuan 已提交
180 181 182 183 184 185 186 187
  }

private:
  size_t size_;
  real scale_;
  real pow_;
};

H
hedaoyuan 已提交
188
/**
189 190 191 192 193 194 195 196 197
 * \brief Backward calculation for normalization with across maps.
 *
 * The implementation of this Function is derived from the
 * CrossMapNormalFunc implementation.
 *
 * InputGrad = OutputGrad * denoms ^ (-beta)
 *    /
 *  + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
 *    /
198
 *
199
 * Argument in the Function:
200 201 202
 * The data of inputs/outputs format is the same as the forward interface
 * and is NCHW.
 *
203 204 205 206 207 208 209 210 211 212
 * \param size_      represent N
 * \param scale_     represent alpha / N
 * \param pow_       represent beta
 * \param inputs[0]  represent InputValue, inputs[0] of CrossMapNormalFunc
 * \param inputs[1]  represent OutputValue, outputs[0] of CrossMapNormalFunc
 * \param inputs[2]  represent OutputGrad
 * \param inputs[3]  represent denoms, outputs[1] of CrossMapNormalFunc
 *                   This is the intermediate result that is
 *                   preserved in the forward calculation.
 * \param outputs[0] represent InputGrad
H
hedaoyuan 已提交
213 214 215 216 217 218 219 220 221 222
 */
template <DeviceType Device>
class CrossMapNormalGradFunc : public FunctionBase {
public:
  void init(const FuncConfig& config) override {
    size_ = config.get<size_t>("size");
    scale_ = config.get<real>("scale");
    pow_ = config.get<real>("pow");
  }

223
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
224 225
    CHECK_EQ((size_t)4, inputs.size());
    CHECK_EQ((size_t)1, outputs.size());
H
hedaoyuan 已提交
226

H
hedaoyuan 已提交
227
    CHECK_EQ(inputs[0].shape().ndims(), (size_t)4);
H
hedaoyuan 已提交
228 229 230 231 232
    CHECK(inputs[0].shape() == inputs[1].shape());
    CHECK(inputs[0].shape() == inputs[2].shape());
    CHECK(inputs[0].shape() == inputs[3].shape());
    CHECK(inputs[0].shape() == outputs[0].shape());

H
hedaoyuan 已提交
233 234 235 236 237 238 239
    if (outputs[0].getArgType() != ADD_TO) {
      // Currently, some algorithm implementations are ASSIGN_TO mode,
      // if need to support the ADD_TO calculation, need to clear the output.
      typename Tensor<real, Device>::Vector tmp(
          outputs[0].shape().getElements(), outputs[0].data<real>());
      tmp.zero();
    }
240

H
hedaoyuan 已提交
241 242 243 244 245 246 247 248 249 250
    size_t samples = inputs[0].shape()[0];
    size_t channels = inputs[0].shape()[1];
    size_t height = inputs[0].shape()[2];
    size_t width = inputs[0].shape()[3];

    CrossMapNormalGrad<Device>(outputs[0].data<real>(),
                               inputs[0].data<real>(),
                               inputs[1].data<real>(),
                               inputs[2].data<real>(),
                               inputs[3].data<real>(),
H
hedaoyuan 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
                               samples,
                               channels,
                               height,
                               width,
                               size_,
                               scale_,
                               pow_);
  }

private:
  size_t size_;
  real scale_;
  real pow_;
};

H
hedaoyuan 已提交
266
REGISTER_TYPED_FUNC(CrossMapNormal, CPU, CrossMapNormalFunc);
H
hedaoyuan 已提交
267
REGISTER_TYPED_FUNC(CrossMapNormalGrad, CPU, CrossMapNormalGradFunc);
H
hedaoyuan 已提交
268 269
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(CrossMapNormal, GPU, CrossMapNormalFunc);
H
hedaoyuan 已提交
270
REGISTER_TYPED_FUNC(CrossMapNormalGrad, GPU, CrossMapNormalGradFunc);
H
hedaoyuan 已提交
271
#endif
H
hedaoyuan 已提交
272

H
hedaoyuan 已提交
273
}  // namespace paddle