test_collective_api_base.py 23.6 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest
import time
import argparse
import os
import sys
import subprocess
import traceback
import functools
import pickle
26
import tempfile
27
from contextlib import closing
28
import paddle
29 30 31 32 33
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def create_bool_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.choice([True, False], size=shape)
    return data


def create_float_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.random(shape).astype(dtype)
    return data


def create_int_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.randint(0, high=100, size=shape).astype(dtype)
    return data


def create_complex_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.random(shape).astype(dtype)
    data.imag = np.random.random(shape)
    return data


def create_pylist_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
66 67
    # Generate random shape test case for xxx_object api
    shape = np.random.randint(0, high=100, size=(2)).tolist()
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    data = np.random.random(shape).tolist()
    return data


def create_pydict_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
    key = [i for i in range(0, shape[0])]
    value = np.random.random(shape).tolist()
    data = dict(zip(key, value))
    return data


def create_test_data(shape=None, dtype=None, seed=None):
    assert shape, "Shape should be specified"
    if dtype == "float32" or dtype == "float16" or dtype == "float64":
        return create_float_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "bool":
        return create_bool_test_data(shape=shape, seed=seed)
    elif dtype == "int32" or dtype == "int64" or dtype == "int8" or dtype == "uint8":
        return create_int_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "complex64" or dtype == "complex128":
        return create_complex_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "pylist":
        return create_pylist_test_data(shape=shape, seed=seed)
    elif dtype == "pydict":
        return create_pydict_test_data(shape=shape, seed=seed)
    else:
        raise NotImplementedError("Unsupported dtype for creating test data.")


99
class TestCollectiveAPIRunnerBase(object):
100

101 102 103 104 105 106
    def get_model(self,
                  train_prog,
                  startup_prog,
                  rank,
                  indata=None,
                  dtype=None):
107 108 109 110 111 112 113 114 115 116
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
117
        paddle.distributed.init_parallel_env()
118 119 120 121
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
122 123 124
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
125 126
        else:
            place = fluid.CPUPlace()
127 128 129
        indata = create_test_data(shape=(10, 1000),
                                  dtype=args["dtype"],
                                  seed=os.getpid())
L
lilong12 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142
        if args['static_mode']:
            result = self.get_model(train_prog, startup_prog, rank)
            exe = fluid.Executor(place)
            exe.run(startup_prog)
            fetch_list = []
            for elem in result:
                fetch_list.append(elem.name)
            out = exe.run(train_prog,
                          feed={'tindata': indata},
                          fetch_list=fetch_list)
        else:
            out = self.get_model(train_prog, startup_prog, rank, indata)
            #print(out, sys.stderr)
T
tianshuo78520a 已提交
143
        sys.stdout.buffer.write(pickle.dumps(out))
144 145 146 147 148 149 150 151 152 153 154 155


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
L
lilong12 已提交
156
    args["static_mode"] = int(os.getenv("STATIC_MODE"))
157
    args["dtype"] = os.getenv("DTYPE")
158 159 160 161 162 163 164 165 166
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
167

168 169 170 171 172 173 174
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

175 176 177 178 179
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

180
    def _find_free_port(self):
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
        if core.is_compiled_with_cuda():
            env0 = {
                "FLAGS_selected_gpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_gpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
        elif core.is_compiled_with_xpu():
            env0 = {
                "FLAGS_selected_xpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_xpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
230 231 232
        #update environment
        env0.update(envs)
        env1.update(envs)
233 234 235 236
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd = "%s -m coverage run --branch -p %s"
        else:
            tr_cmd = "%s %s"
237 238
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
239 240 241 242 243 244
        path0 = os.path.join(self.temp_dir.name,
                             "/tmp/tr0_err_%d.log" % os.getpid())
        path1 = os.path.join(self.temp_dir.name,
                             "/tmp/tr1_err_%d.log" % os.getpid())
        tr0_pipe = open(path0, "w")
        tr1_pipe = open(path1, "w")
245 246 247 248 249 250 251 252 253 254
        #print(tr0_cmd)
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)

        tr1_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
255 256 257 258 259 260 261 262

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
263
        with open(path0, "r") as f:
264
            sys.stderr.write('trainer 0 stderr file: %s\n' % f.read())
265
        with open(path1, "r") as f:
266
            sys.stderr.write('trainer 1 stderr file: %s\n' % f.read())
267 268 269 270 271 272 273 274
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
L
lilong12 已提交
275
                         static_mode="1",
276
                         check_error_log=False,
277
                         need_envs={},
278 279
                         eager_mode=True,
                         dtype=None):
280 281 282 283
        if backend == "nccl" or backend == "bkcl":
            with_gloo = '0'
        else:
            with_gloo = '1'
284
        required_envs = os.environ.copy()
285
        dtype = "float32" if dtype is None else dtype
286
        additional_envs = {
287
            "NCCL_P2P_DISABLE": "1",
L
lilong12 已提交
288
            "STATIC_MODE": static_mode,
L
lilong12 已提交
289
            "PADDLE_WITH_GLOO": with_gloo,
290
            "PADDLE_DISTRI_BACKEND": backend,
291
            "BACKEND": backend,
292 293
            "PATH_ID": path_id,
            "DTYPE": dtype
294
        }
295
        required_envs.update(additional_envs)
296 297 298 299
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
300
            required_envs["GLOO_LOG_LEVEL"] = "TRACE"
301

302 303 304 305
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

306 307
        if eager_mode:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 1
308 309
        else:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 0
310

311 312
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
            model_file, required_envs)
313 314
        input1 = create_test_data(shape=(10, 1000), dtype=dtype, seed=pid0)
        input2 = create_test_data(shape=(10, 1000), dtype=dtype, seed=pid1)
315 316 317 318
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
319 320
            np.testing.assert_allclose(tr_out0, need_result, rtol=1e-05)
            np.testing.assert_allclose(tr_out1, need_result, rtol=1e-05)
321 322 323 324
        if col_type == "allgather_object":
            need_result = [input1, input2]
            self.assertEqual(need_result, tr0_out)
            self.assertEqual(need_result, tr1_out)
325 326
        elif col_type == "broadcast":
            need_result = input2
327 328
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
329 330
        elif col_type == "reduce":
            need_result = input1 + input2
331
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
332 333 334 335
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
336 337
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
338 339 340 341 342 343
        elif col_type == "reduce_scatter":
            need_result = input1 + input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
344 345
        elif col_type == "allreduce":
            need_result = input1 + input2
346 347 348 349 350 351 352 353
            np.testing.assert_allclose(tr0_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
354 355 356
        elif col_type == "parallel_embedding":
            result_data = tr0_out[0]
            np.random.seed(2020)
357
            need_result = np.random.rand(12, 8)
358 359 360
            for i in range(result_data.shape[0]):
                for j in range(result_data.shape[1]):
                    data = result_data[i][j]
361 362 363
                    assert np.allclose(tr0_out[1][i][j],
                                       need_result[data],
                                       atol=1e-08)
364 365 366 367 368
        elif col_type == "row_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
369 370 371 372
            np.testing.assert_allclose(result_data,
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
373 374 375 376 377
        elif col_type == "column_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
378 379 380 381
            np.testing.assert_allclose(result_data,
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
382 383 384 385 386 387 388
        elif col_type == "alltoall":
            need_result1 = np.vstack((input1[0:input1.shape[0] // 2, :],
                                      input2[0:input2.shape[0] // 2, :]))
            need_result2 = np.vstack((input1[input1.shape[0] // 2:, :],
                                      input2[input2.shape[0] // 2:, :]))
            tr0_out = np.vstack(tr0_out)
            tr1_out = np.vstack(tr1_out)
389 390 391 392 393 394 395 396
            np.testing.assert_allclose(tr0_out,
                                       need_result1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out,
                                       need_result2,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
397 398
        elif col_type == "sendrecv":
            result_data = tr1_out[0]
399 400 401 402
            np.testing.assert_allclose(input1,
                                       result_data,
                                       rtol=1e-05,
                                       atol=1e-05)
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        elif col_type == "global_gather":
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size

            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr1 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, tot_expert):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]

            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr2 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, tot_expert):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            global_expert_count1 = np.zeros(tot_expert).astype("int")
            global_expert_count2 = np.zeros(tot_expert).astype("int")
            global_expert_count1[0:n_expert] = local_expert_count1[0:n_expert]
            global_expert_count1[n_expert:] = local_expert_count2[0:n_expert]
            global_expert_count2[0:n_expert] = local_expert_count1[n_expert:]
            global_expert_count2[n_expert:] = local_expert_count2[n_expert:]

            np.random.seed(pid0)
            fwd_expert_count = sum(global_expert_count1).astype("int")
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            np.random.seed(pid1)
            fwd_expert_count = sum(global_expert_count2).astype("int")
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            output1 = [[], [], [], []]
            output2 = [[], [], [], []]
            send_ptr1 = 0
            send_ptr2 = 0

            for i in range(n_expert):
                for j in range(world_size):
                    idx = j * n_expert + i
                    if j == 0:
                        output1_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx], :]
                        output1_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx], :]
                        output1[i].extend(output1_part1)
                        output1[i + n_expert].extend(output1_part2)
                    else:
                        output2_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx]]
                        output2_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx]]
                        output2[i].extend(output2_part1)
                        output2[i + n_expert].extend(output2_part2)
                    send_ptr1 = send_ptr1 + global_expert_count1[idx]
                    send_ptr2 = send_ptr2 + global_expert_count2[idx]
            result1 = []
            result2 = []
            for i in range(tot_expert):
                for arr in output1[i]:
                    if arr == []:
                        continue
                    result1.append(arr)
            for i in range(tot_expert):
                for arr in output2[i]:
                    if arr == []:
                        continue
                    result2.append(arr)
            if result1 == []:
                output1 = np.array([])
            else:
479 480
                output1 = np.concatenate(result1, axis=0).reshape(
                    sum(local_expert_count1), in_feat)
481 482 483
            if result2 == []:
                output2 = np.array([])
            else:
484 485
                output2 = np.concatenate(result2, axis=0).reshape(
                    sum(local_expert_count2), in_feat)
486 487 488 489 490 491 492

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

493 494 495 496 497 498 499 500
            np.testing.assert_allclose(tr0_out[0],
                                       output1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       output2,
                                       rtol=1e-05,
                                       atol=1e-05)
501
            if static_mode == 0:
502 503 504 505 506 507 508 509
                np.testing.assert_allclose(tr0_out[1],
                                           2 * local_input_buf1,
                                           rtol=1e-05,
                                           atol=1e-05)
                np.testing.assert_allclose(tr1_out[1],
                                           2 * local_input_buf2,
                                           rtol=1e-05,
                                           atol=1e-05)
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

        elif col_type == "global_scatter":
            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count1)
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr1 = np.ones(4, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, 4):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]
            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count2)
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr2 = np.ones(4, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, 4):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            output1 = []
            output2 = []
            for i in range(2):
                for j in range(2):
                    idx = j * 2 + i
                    if j == 0:
                        # send data to 0 card
                        output1.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output1.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
                    else:
                        output2.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output2.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
            if output1 == []:
                output1 = np.array([])
            else:
                output1 = np.concatenate(output1)
            if output2 == []:
                output2 = np.array([])
            else:
                output2 = np.concatenate(output2)

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

562 563 564 565 566 567 568 569
            np.testing.assert_allclose(tr0_out[0],
                                       output1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       output2,
                                       rtol=1e-05,
                                       atol=1e-05)
570
            if static_mode == 0:
571 572 573 574 575 576 577 578
                np.testing.assert_allclose(tr0_out[1],
                                           2 * local_input_buf1,
                                           rtol=1e-05,
                                           atol=1e-05)
                np.testing.assert_allclose(tr1_out[1],
                                           2 * local_input_buf2,
                                           rtol=1e-05,
                                           atol=1e-05)
579 580
        else:
            pass