gru_compute.cc 4.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/math/gru_compute.h"
Y
Yu Yang 已提交
13
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
14 15
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
G
guosheng 已提交
16 17 18 19 20 21

namespace paddle {
namespace operators {
namespace math {

template <typename T>
Q
QI JUN 已提交
22 23
struct GRUUnitFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
24 25 26
                      GRUMetaValue<T> value, int frame_size, int batch_size,
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
G
guosheng 已提交
27
#ifndef __NVCC__
Y
Yu Yang 已提交
28
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
29
    if (value.prev_out_value) {
Y
Yu Yang 已提交
30 31 32
      blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
                value.prev_out_value, frame_size, value.gate_weight,
                frame_size * 2, 1, value.gate_value, frame_size * 3);
G
guosheng 已提交
33 34 35
    }

    detail::forward_reset_output(detail::forward::gru_resetOutput<T>(), value,
G
guosheng 已提交
36
                                 frame_size, batch_size, active_gate);
G
guosheng 已提交
37

G
guosheng 已提交
38
    if (value.prev_out_value) {
Y
Yu Yang 已提交
39 40 41 42
      blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
                value.reset_output_value, frame_size, value.state_weight,
                frame_size, 1, value.gate_value + frame_size * 2,
                frame_size * 3);
G
guosheng 已提交
43 44 45
    }

    detail::forward_final_output(detail::forward::gru_finalOutput<T>(), value,
G
guosheng 已提交
46
                                 frame_size, batch_size, active_node);
G
guosheng 已提交
47 48 49 50 51
#endif
  }
};

template <typename T>
Q
QI JUN 已提交
52 53
struct GRUUnitGradFunctor<platform::CPUDeviceContext, T> {
  static void compute(const platform::CPUDeviceContext &context,
54
                      GRUMetaValue<T> value, GRUMetaGrad<T> grad,
G
guosheng 已提交
55
                      int frame_size, int batch_size,
56 57
                      const detail::ActivationType active_node,
                      const detail::ActivationType active_gate) {
G
guosheng 已提交
58 59
#ifndef __NVCC__
    detail::backward_state_grad(detail::backward::gru_stateGrad<T>(), value,
G
guosheng 已提交
60
                                grad, frame_size, batch_size, active_node);
Y
Yu Yang 已提交
61
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
G
guosheng 已提交
62
    if (value.prev_out_value && grad.prev_out_grad) {
Y
Yu Yang 已提交
63 64 65 66
      blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
                grad.gate_grad + frame_size * 2, frame_size * 3,
                value.state_weight, frame_size, 0, grad.reset_output_grad,
                frame_size);
G
guosheng 已提交
67

G
guosheng 已提交
68
      if (grad.state_weight_grad) {
Y
Yu Yang 已提交
69 70 71 72
        blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                  value.reset_output_value, frame_size,
                  grad.gate_grad + frame_size * 2, frame_size * 3, 1,
                  grad.state_weight_grad, frame_size);
G
guosheng 已提交
73 74 75 76
      }
    }

    detail::backward_reset_grad(detail::backward::gru_resetGrad<T>(), value,
G
guosheng 已提交
77 78
                                grad, frame_size, batch_size, active_gate);
    if (grad.prev_out_grad && value.prev_out_value) {
Y
Yu Yang 已提交
79 80 81
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                grad.gate_grad, frame_size * 3, value.gate_weight,
                frame_size * 2, 1, grad.prev_out_grad, frame_size);
G
guosheng 已提交
82

G
guosheng 已提交
83
      if (grad.gate_weight_grad) {
Y
Yu Yang 已提交
84 85 86
        blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                  value.prev_out_value, frame_size, grad.gate_grad,
                  frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
G
guosheng 已提交
87 88 89 90 91 92
      }
    }
#endif
  }
};

Q
QI JUN 已提交
93 94 95 96
template struct GRUUnitFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitFunctor<platform::CPUDeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CPUDeviceContext, double>;
G
guosheng 已提交
97 98 99 100

}  // namespace math
}  // namespace operators
}  // namespace paddle